Caspase-dependent retinal ganglion cell apoptosis in the rat model of acute diabetes.

Chin Med J (Engl)

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China.

Published: December 2008

Background: Neural apoptosis is generally believed to be mediated by two distinct pathways, caspase-dependant and caspase-independent pathways. This study investigated the apoptotic pathways involved in retinal ganglion cells in acute diabetes in rats.

Methods: Diabetes was induced in male Wistar rats by a peritoneal injection of streptozotocin (STZ). Expression and localization of caspase-3 and apoptosis-inducing factor (AIF) proteins in the retina of diabetic rats was examined by Western blotting and immunohistochemistry analyses. Terminal transferase dUTP nick end labeling (TUNEL) assay and immunofluorescent staining specific for caspase-3 and AIF were applied to analyze for apoptosis of retinal ganglion cells. In addition, a caspase-3 inhibitor DEVD-CHO was injected intravitreally to further determine the apoptotic pathways of retinal ganglion cells triggered in acute diabetes.

Results: Two weeks after induction of diabetes, a significant increase in caspase-3 protein expression and localization occurred in the nerve fiber layer, ganglion cell layer, and inner plexiform layer of the retina. Four weeks after the onset of diabetes, the increase in caspase-3 expression was profound eight weeks postinduction of diabetes (P < 0.05). Meanwhile, no AIF protein expression was detected in this study. In addition, intravitreal administration of the caspase-3 inhibitor DEVD-CHO reduced apoptosis of retinal ganglion cells by its direct inhibitory action on caspase-3.

Conclusion: Caspase-dependent apoptotic pathways may be the main stimulant of STZ-induced retinal ganglion cell apoptosis in acute diabetes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

retinal ganglion
24
ganglion cells
16
ganglion cell
12
acute diabetes
12
apoptotic pathways
12
cell apoptosis
8
expression localization
8
apoptosis retinal
8
caspase-3 inhibitor
8
inhibitor devd-cho
8

Similar Publications

Stem Cell-Based Therapies for Glaucoma Treatment: A Review Bridging the Gap in Veterinary Patients.

Int J Mol Sci

December 2024

Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal.

Retinal diseases are characterized by progressive damage to retinal cells, leading to irreversible vision loss. Among these, glaucoma stands out as a multifactorial neurodegenerative disease involving elevated intraocular pressure, retinal ganglion cell apoptosis, and optic nerve damage, ultimately resulting in blindness in both humans and dogs. Stem cell-based therapies have emerged as a promising therapeutic option for such conditions due to their regenerative and neuroprotective potential.

View Article and Find Full Text PDF

Co-targeting of glial activation and inflammation by tsRNA-Gln-i-0095 for treating retinal ischemic pathologies.

Cell Commun Signal

January 2025

Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, China.

Ischemic retinopathies are the major causes of blindness, yet effective early-stage treatments remain limited due to an incomplete understanding of the underlying molecular mechanisms. Significant changes in gene expression often precede structural and functional alterations. Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are emerging as novel gene regulators, involved in various biological processes and human diseases.

View Article and Find Full Text PDF

Objective: The study aimed to evaluate the interocular symmetry of macular sublayer thickness among healthy children aged 6-12 years.

Methods: The Shiraz Pediatric Eye Study included 500 randomly selected children who underwent SD-OCT of the macula and optical biometry using the IOLMaster-500. Exclusion criteria involved ocular abnormalities or axial lengths outside the 21.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) typically respond to light stimulation over their spatially restricted receptive field. Using large-scale recordings in the mouse retina, we show that a subset of non- direction-selective (DS) RGCs exhibit asymmetric activity, selective to motion direction, in response to a stimulus crossing an area far beyond the classic receptive field. The extraclassical response arises via inputs from an asymmetric distal zone and is enhanced by desensitization mechanisms and an inherent DS component, creating a network of neurons responding to motion toward the optic disc.

View Article and Find Full Text PDF

Background: Bushen-Huoxue-Mingmu-Formula (MMF) has achieved definite clinical efficacy. However, its mechanism is still unclear.

Objective: Investigating the molecular mechanism of MMF to protect retinal ganglion cells (RGCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!