From traumatic brain injury to posttraumatic epilepsy: what animal models tell us about the process and treatment options.

Epilepsia

Epilepsy Research Group, Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland.

Published: February 2009

A large number of animal models of traumatic brain injury (TBI) are already available for studies on mechanisms and experimental treatments of TBI. Immediate and early seizures have been described in many of these models with focal or mixed type (both gray and white matter damage) injury. Recent long-term video-electroencephalography (EEG) monitoring studies have demonstrated that TBI produced by lateral fluid-percussion injury in rats results in the development of late seizures, that is, epilepsy. These animals develop hippocampal alterations that are well described in status epilepticus-induced spontaneous seizure models and human posttraumatic epilepsy (PTE). In addition, these rats have damage ipsilaterally in the cortical injury site and thalamus. Although studies in the trauma field provide a large amount of information about the molecular and cellular alterations corresponding to the immediate and early phases of PTE, chronic studies relevant to the epileptogenesis phase are sparse. Moreover, despite the multiple preclinical pharmacologic and cell therapy trials, there is no information available describing whether these therapeutic approaches aimed at improving posttraumatic recovery would also affect the development of lowered seizure threshold and epilepsy. To make progress, there is an obvious need for information exchange between the trauma and epilepsy fields. In addition, the inclusion of epilepsy as an outcome measure in preclinical trials aiming at improving somatomotor and cognitive recovery after TBI would provide valuable information about possible new avenues for antiepileptogenic interventions and disease modification after TBI.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1528-1167.2008.02007.xDOI Listing

Publication Analysis

Top Keywords

traumatic brain
8
brain injury
8
posttraumatic epilepsy
8
animal models
8
epilepsy
6
injury
5
tbi
5
injury posttraumatic
4
epilepsy animal
4
models
4

Similar Publications

Traumatic brain injury (TBI) is identified as a risk factor for Parkinson's disease (PD), which is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). However, the precise mechanism by which chronic TBI initiates PD pathogenesis is not yet fully understood. In our present study, we assessed the chronic progression and pathogenesis of PD-like behavior at different intervals in TBI mice.

View Article and Find Full Text PDF

The age-specific incidence of traumatic brain injury in older adults is rising in high-income countries, mainly due to an increase in the incidence of falls. The severity of traumatic brain injury in older adults can be underestimated because of a delay in the development of mass effect and symptoms of intracranial haemorrhage. Management and rehabilitation in older adults must consider comorbidities and frailty, the treatment of pre-existing disorders, the reduced potential for recovery, the likelihood of cognitive decline, and the avoidance of future falls.

View Article and Find Full Text PDF

Therapeutic drug development for central nervous system injuries, such as traumatic brain injury (TBI), presents significant challenges. TBI results in primary mechanical damage followed by secondary injury, leading to cognitive dysfunction and memory loss. Our recent study demonstrated the potential of carbon monoxide-releasing molecules (CORMs) to improve TBI recovery by enhancing neurogenesis.

View Article and Find Full Text PDF

Alternating bilateral sensory stimulation (ABS) is a clinical physical therapy technique effective in treating post-traumatic stress disorder (PTSD). However, its utilization in treating conditions beyond PTSD remains limited. Here, we present a protocol to reduce ethanol-induced conditioned place preference (CPP) using 4 Hz ABS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!