Porphyromonas gingivalis secretes endopeptidase gingipains, which are important virulence factors of this bacterium. Gingipains are transported across the inner membrane via the Sec system, followed by transport across the outer membrane via an unidentified pathway. The latter transport step is suggested to be mediated via a novel protein secretion pathway. In the present study, we report a novel candidate as an essential factor for the latter transport step. The PG0027 gene of P. gingivalis W83 encodes novel protein PG27. In a PG0027 deletion mutant (83K10), the activities of Arg-gingipain and Lys-gingipain were severely reduced, while the activities of secreted exopeptidases DPPIV, DPP-7, and PTP-A were unaffected. Protein localization was investigated by cell-surface biotinylation, subcellular fractionation, and immunoblot analysis. In the wild-type W83, Arg-gingipains in membrane fraction were detected as cell surface proteins. In contrast, in 83K10, Arg-gingipains were trapped in the periplasm and hardly secreted into an extracellular milieu. PG27 was suggested to be exposed to the cell surface by a cell surface biotinylation experiment; however, PG27 was detected in both inner and outer membrane fractions by subcellular fractionation experiments. Taken together, we suggest that PG27 is a unique membrane protein essential for a novel secretion pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1574-6968.2009.01489.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!