The function of thyrotropin (TSH) in the thyroid gland is mediated by thyrotropin receptor (TSHR). In addition to the thyroid, TSHR expression has been described in some non-thyroidal tissues, although it is uncertain whether TSHR is present in hepatocytes. One study has reported hepatic expression of TSHR mRNA, but this was considered to be because of illegitimate transcription, and there has not been a study investigating its protein expression and function in hepatocytes. Here, we examined the expression of TSHR in human and rat liver tissues, as well as human normal hepatocyte cell line L-02. Our results demonstrated that hepatic TSHR mRNA could be detected and had the same sequence as that of thyroid-derived mRNA. TSHR protein was also expressed and mainly located in the hepatocyte cell membrane. Moreover, bovine TSH and immunoglobulin from sera of patients with Graves' disease stimulated cAMP production in these cells. Taken together, these data show that TSHR is present and functional in hepatocytes, and this expression is not a case of illegitimate transcription. Given the pivotal role of the liver in body metabolism and many human diseases, our findings provide important implications for a potentially novel physiopathological role of TSH via acting on the TSHR in hepatocytes besides its classical role in regulating the thyroid function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4515077 | PMC |
http://dx.doi.org/10.1111/j.1582-4934.2008.00670.x | DOI Listing |
Nat Metab
November 2023
Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
Transient reprogramming by the expression of OCT4, SOX2, KLF4 and MYC (OSKM) is a therapeutic strategy for tissue regeneration and rejuvenation, but little is known about its metabolic requirements. Here we show that OSKM reprogramming in mice causes a global depletion of vitamin B and molecular hallmarks of methionine starvation. Supplementation with vitamin B increases the efficiency of reprogramming both in mice and in cultured cells, the latter indicating a cell-intrinsic effect.
View Article and Find Full Text PDFNat Cell Biol
May 2023
Department of Biology, University of Padua, Padua, Italy.
During embryonic development, naive pluripotent epiblast cells transit to a formative state. The formative epiblast cells form a polarized epithelium, exhibit distinct transcriptional and epigenetic profiles and acquire competence to differentiate into all somatic and germline lineages. However, we have limited understanding of how the transition to a formative state is molecularly controlled.
View Article and Find Full Text PDFiScience
January 2023
Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
Generation of induced pluripotent stem cells (iPSCs) is inefficient and stochastic. The underlying causes for these deficiencies are elusive. Here, we showed that the reprogramming factors (OCT4, SOX2, and KLF4, collectively OSK) elicit dramatic reprogramming stress even without the pro-oncogene MYC including massive transcriptional turbulence, massive and random deregulation of stress-response genes, cell cycle impairment, downregulation of mitotic genes, illegitimate reprogramming, and cytotoxicity.
View Article and Find Full Text PDFFunct Integr Genomics
January 2023
Department of Entomology, University of Kentucky, Lexington, KY, USA.
The complete mitochondrial genome (mitogenome) of the sawfly, Nesodiprion zhejiangensis Zhou & Xiao, was sequenced, assembled, and deposited in GenBank (Accession Number: OM501121). The 15,660 bp N. zhejiangensis mitogenome encodes for 2 ribosomal RNAs (rrnL and rrnS), 22 transfer RNAs (tRNAs), 13 protein-coding genes (PCGs), and an AT-rich region of 450 bp in length.
View Article and Find Full Text PDFMol Cancer
December 2022
Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Background: Inactivation of the Hippo pathway promotes Yap nuclear translocation, enabling execution of a transcriptional program that induces tissue growth. Genetic lesions of Hippo intermediates only identify a minority of cancers with illegitimate YAP activation. Yap has been implicated in resistance to targeted therapies, but the mechanisms by which YAP may impact adaptive resistance to MAPK inhibitors are unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!