Rescue of the neuroblastoma mutant of the human nucleoside diphosphate kinase A/nm23-H1 by the natural osmolyte trimethylamine-N-oxide.

FEBS Lett

Institut de Biochimie et Génétique Cellulaires, University of Bordeaux-2, CNRS, 1 Rue C. Saint-Saëns, 33077 Bordeaux Cedex, France.

Published: February 2009

The point mutation S120G in human nucleoside diphosphate kinase A, identified in patients with neuroblastoma, causes a protein folding defect. The urea-unfolded protein cannot refold in vitro, and accumulates as a molten globule folding intermediate. We show here that the trimethylamine-N-oxide (TMAO) corrects the folding defect and stimulated subunit association. TMAO also substantially increased the stability to denaturation by urea of both wild-type and S120G mutant. A non-native folding intermediate accumulated in the presence of 4.5-7M urea and of 2M TMAO. It was inactive, monomeric, contained some secondary structure but no tertiary structure and displayed a remarkable stability to denaturation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2009.01.043DOI Listing

Publication Analysis

Top Keywords

human nucleoside
8
nucleoside diphosphate
8
diphosphate kinase
8
folding defect
8
folding intermediate
8
stability denaturation
8
rescue neuroblastoma
4
neuroblastoma mutant
4
mutant human
4
kinase a/nm23-h1
4

Similar Publications

Purpose: Patients with partial or complete DPD deficiency have decreased capacity to degrade fluorouracil and are at risk of developing toxicity, which can be even life-threatening.

Case: A 43-year-old man with moderately differentiated rectal adenocarcinoma on capecitabine presented to the emergency department with complaints of nausea, vomiting, diarrhea, weakness, and lower abdominal pain for several days. Laboratory findings include grade 4 neutropenia (ANC 10) and thrombocytopenia (platelets 36,000).

View Article and Find Full Text PDF

Background: Atherosclerosis (AS) is increasingly recognized as a chronic inflammatory disease that significantly compromises vascular health and acts as a major contributor to cardiovascular diseases. Advancements in lipidomics and metabolomics have unveiled the complex role of fatty acid metabolism (FAM) in both healthy and pathological states. However, the specific roles of fatty acid metabolism-related genes (FAMGs) in shaping therapeutic approaches, especially in AS, remain largely unexplored and are a subject of ongoing research.

View Article and Find Full Text PDF

Background: Hypomethylating agents (HMA), such as azacytidine (AZA) and decitabine (DAC), are epigenetic therapies used to treat some patients with acute myeloid leukaemia (AML) and myelodysplastic syndrome. HMAs act in a replication-dependent manner to remove DNA methylation from the genome. However, AML cells targeted by HMA therapy are often quiescent within the bone marrow, where oxygen levels are low.

View Article and Find Full Text PDF

Drug discovery and development is a challenging and time-consuming process. Laboratory experiments conducted on Vidarabine showed IC 6.97 µg∕mL, 25.

View Article and Find Full Text PDF

Decoding the mA epitranscriptomic landscape for biotechnological applications using a direct RNA sequencing approach.

Nat Commun

January 2025

National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

Epitranscriptomic modifications, particularly N6-methyladenosine (mA), are crucial regulators of gene expression, influencing processes such as RNA stability, splicing, and translation. Traditional computational methods for detecting mA from Nanopore direct RNA sequencing (DRS) data are constrained by their reliance on experimentally validated labels, often resulting in the underestimation of modification sites. Here, we introduce pum6a, an innovative attention-based framework that integrates positive and unlabeled multi-instance learning (MIL) to address the challenges of incomplete labeling and missing read-level annotations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!