Rapid functional maturation of nascent dendritic spines.

Neuron

Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.

Published: January 2009

Spine growth and retraction with synapse formation and elimination plays an important role in shaping brain circuits during development and in the adult brain, yet the temporal relationship between spine morphogenesis and the formation of functional synapses remains poorly defined. We imaged hippocampal pyramidal neurons to identify spines of different ages. We then used two-photon glutamate uncaging, whole-cell recording, and Ca(2+) imaging to analyze the properties of nascent spines and their older neighbors. New spines expressed glutamate-sensitive currents that were indistinguishable from mature spines of comparable volumes. Some spines exhibited negligible AMPA receptor-mediated responses, but the occurrence of these "silent" spines was uncorrelated with spine age. In contrast, NMDA receptor-mediated Ca(2+) accumulations were significantly lower in new spines. New spines reconstructed using electron microscopy made synapses. Our data support a model in which outgrowth and enlargement of nascent spines is tightly coupled to formation and maturation of glutamatergic synapses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800307PMC
http://dx.doi.org/10.1016/j.neuron.2008.10.054DOI Listing

Publication Analysis

Top Keywords

spines
10
nascent spines
8
rapid functional
4
functional maturation
4
maturation nascent
4
nascent dendritic
4
dendritic spines
4
spines spine
4
spine growth
4
growth retraction
4

Similar Publications

Objective: To analyse the relationship between bruxism and musculoskeletal parameters of the cervical and mandibular regions in children and adolescents.

Methods: A comparative cross-sectional study was performed with subjects from 6 to 16 years. Subjects were divided into bruxism (any type) and control groups.

View Article and Find Full Text PDF

Purpose: The study aimed to develop a deep learning model for rapid, automated measurement of full-spine X-rays in adolescents with Adolescent Idiopathic Scoliosis (AIS). A significant challenge in this field is the time-consuming nature of manual measurements and the inter-individual variability in these measurements. To address these challenges, we utilized RTMpose deep learning technology to automate the process.

View Article and Find Full Text PDF

Background: Ferroptosis and immune responses are critical pathological events in spinal cord injury (SCI), whereas relative molecular and cellular mechanisms remain unclear.

Methods: Micro-array datasets (GSE45006, GSE69334), RNA sequencing (RNA-seq) dataset (GSE151371), spatial transcriptome datasets (GSE214349, GSE184369), and single cell RNA sequencing (scRNA-seq) datasets (GSE162610, GSE226286) were available from the Gene Expression Omnibus (GEO) database. Through weighted gene co-expression network analysis and differential expression analysis in GSE45006, we identified differentially expressed time- and immune-related genes (DETIRGs) associated with chronic SCI and differentially expressed ferroptosis- and immune-related genes (DEFIRGs), which were validated in GSE151371.

View Article and Find Full Text PDF

Purpose: Clinicians monitor scoliosis progression using multiple radiographs during growth. During imaging, arms must be elevated to visualize vertebrae, possibly affecting sagittal alignment. This study aimed to determine the arm position that best represents habitual standing (and possibly allowing hand-based skeletal maturity assessment) to obtain frontal and lateral stereo-radiographs as measured using frontal, sagittal, and transverse angles.

View Article and Find Full Text PDF

Introduction: Congenital lumbar kyphosis is present in about 15% of patients with myelomeningocele. Worsening of deformity with complications such as chronic skin ulcers and bone exposure is common. In patients under 8 years of age, treatment becomes even more challenging: in addition to resecting the apex of the kyphotic deformity, we should ideally stabilize the spine with fixation methods that do not interrupt the growth of the rib cage, associated with the challenging pelvic fixation in this population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!