Approximately thirty-four percent of people who experience acute low back pain (LBP) will have recurrent episodes. It remains unclear why some people experience recurrences and others do not, but one possible cause is a loss of normal control of the back muscles. We investigated whether the control of the short and long fibres of the deep back muscles was different in people with recurrent unilateral LBP from healthy participants. Recurrent unilateral LBP patients, who were symptom free during testing, and a group of healthy volunteers, participated. Intramuscular and surface electrodes recorded the electromyographic activity (EMG) of the short and long fibres of the lumbar multifidus and the shoulder muscle, deltoid, during a postural perturbation associated with a rapid arm movement. EMG onsets of the short and long fibres, relative to that of deltoid, were compared between groups, muscles, and sides. In association with a postural perturbation, short fibre EMG onset occurred later in participants with recurrent unilateral LBP than in healthy participants (p=0.022). The short fibres were active earlier than long fibres on both sides in the healthy participants (p<0.001) and on the non-painful side in the LBP group (p=0.045), but not on the previously painful side in the LBP group. Activity of deep back muscles is different in people with a recurrent unilateral LBP, despite the resolution of symptoms. Because deep back muscle activity is critical for normal spinal control, the current results provide the first evidence of a candidate mechanism for recurrent episodes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pain.2008.12.002 | DOI Listing |
We demonstrate a widely spaced, stabilized, and self-referenced opto-electronic oscillator driven electro-optic modulator based optical frequency comb. Using an ultra-stable Fabry-Perot etalon as a stable reference, we simultaneously stabilize a CW laser and generate a low noise and stable RF oscillation used to drive an electro-optic comb. In such a manner, the Fabry-Perot etalon pins both the carrier-envelope-offset frequency ( ) and the repetition rate of the comb in place ( ), eliminating the need for an external RF oscillator.
View Article and Find Full Text PDFA polarization-independent dual-peak narrow-band filter is proposed and demonstrated theoretically and experimentally, which is realized by using a helical long-period fiber grating (HLPG) but with a period small down to tens of micrometers. Unlike those excessively tilted fiber gratings (Ex-TFGs) or the conventional long-period fiber gratings (LPGs) but with a small period down to tens of micrometers where the generated dual-peak pairs (DPPs) are all of the strong polarization-dependence, the DPPs obtained in this study are of the polarization-independent, which is the first time, to the best of our knowledge, that the underlying mechanism for generation of the polarization-independent DPPs in transmission spectrum of the helical small-period fiber grating (HSPFG) has been revealed both theoretically and experimentally.
View Article and Find Full Text PDFWe propose and demonstrate, for the first time to the best of our knowledge, an all-polarization-maintaining (all-PM) dual-comb Er-fiber laser based on combined figure-8 and figure-9 architectures. The opposite signs of the non-reciprocal phase shifts required for figure-8 and figure-9 architectures in the shared nonlinear amplifying loop mirror (NALM) are achieved using a single non-reciprocal phase shifter (NRPS) that operates in two orthogonal polarizations. The capability of common mode noise cancellation, environmental stability, long-term reliability, and the tunable range of the repetition rate difference Δ between two combs has been investigated and characterized.
View Article and Find Full Text PDFWe report on the growth of a 2.86 at.% Ho:YGG crystal using the optical floating zone technique in an oxygen-rich environment, followed by the study of its structure, optical spectroscopy and first demonstration of continuous-wave laser operation at 2.
View Article and Find Full Text PDFWe propose and demonstrate an ultra-wide tunable mode-locked all-fiber laser based on nonlinear amplifying loop mirror (NALM) with the output of cylindrical vector beams (CVBs). The tuning range covers from 1029 nm to 1098 nm through the intracavity nonlinear polarization evolution (NPE) filter effect. The switchable CVBs between radially and azimuthally polarized beams with mode purity above 90% are generated by incorporating a broadband few-mode long-period fiber grating (LPFG).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!