Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An important challenge in liver tissue engineering is the development of bioartificial systems that are able to favour the liver reconstruction and to modulate liver cell behaviour. A crossed hollow fiber membrane bioreactor was developed to support the long-term maintenance and differentiation of human hepatocytes. The bioreactor consists of two types of hollow fiber (HF) membranes with different molecular weight cut-off (MWCO) and physico-chemical properties cross-assembled in alternating manner: modified polyetheretherketone (PEEK-WC) and polyethersulfone (PES), used for the medium inflow and outflow, respectively. The combination of these two fiber set produces an extracapillary network for the adhesion of cells and a high mass exchange through the cross-flow of culture medium. The transport of liver specific products such as albumin and urea together with the transport of drug such as diazepam was modelled and compared with the experimental metabolic data. The theoretical metabolite concentration differed 7.5% for albumin and 5% for urea with respect to experimental data. The optimised perfusion conditions of the bioreactor allowed the maintenance of liver functions in terms of urea synthesis, albumin secretion and diazepam biotransformation up to 18 days of culture. In particular the good performance of the bioreactor was confirmed by the high rate of urea synthesis (28.7 microg/h 10(6) cells) and diazepam biotransformation. In the bioreactor human hepatocytes expressed at high levels the individual cytochrome P450 isoenzymes involved in the diazepam metabolism. The results demonstrated that crossed HF membrane bioreactor is able to support the maintenance of primary human hepatocytes preserving their liver specific functions for all investigated period. This device may be a potential tool in the liver tissue engineering for drug metabolism/toxicity testing and study of disease pathogenesis alternatively to animal experimentation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2009.01.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!