Prevention of the prevalence of HB depends upon the development of efficient diagnostic reagent and preventive vaccine. Pichia pastoris offers many advantages over the other expression systems in the production of recombinant HBsAg. In this study, we reported that the recombinant P. pastoris strains were cultured in shake flasks and then scaled up in a 5.0-l bioreactor: approximately 27 mg/l of the protein and the maximal cell OD at 600 nm of 310 were achieved in the bioreactor. The recombinant HBsAg was purified by three steps of purification procedures. SDS-PAGE showed that the purified recombinant HBsAg constituted only one homogeneous band of approximately 24 kDa. CsCl density gradient ultracentrifugation assay indicated that the density of the HBsAg was 1.2 mg/ml, which was in agreement with the natural HBsAg, the HBsAg expressed in Saccharomyces cerevisiae and in mammalian cells. Electron microscope observation revealed that the purified recombinant HBsAg was homogeneous 22-nm particles, suggesting the HBsAg expressed in P. pastoris was self-assembled to virus-like structures. Competitive ELISA indicated that P. pastoris-derived HBsAg possessed the excellent immunoreaction with anti-HBsAg. Animal immunization showed that the immunogenicity of P. pastoris-derived HBsAg was superior to that of S. cerevisiae-derived HBsAg. Together, our results demonstrated that the recombinant HBsAg expressed in P. pastoris could provide promising, inexpensive, and large-scale materials for the diagnostic reagent and vaccine to prevent HBV infection.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-009-8527-xDOI Listing

Publication Analysis

Top Keywords

recombinant hbsag
20
hbsag
13
hbsag expressed
12
pichia pastoris
8
diagnostic reagent
8
purified recombinant
8
expressed pastoris
8
pastoris-derived hbsag
8
recombinant
6
pastoris
5

Similar Publications

Xalnesiran with or without an Immunomodulator in Chronic Hepatitis B.

N Engl J Med

December 2024

From the Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University (J.H., X.L.), and the State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Institute of Hepatology, Nanfang Hospital (J.H.), Guangzhou, the Department of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University (W.Z.), the Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine (Q.X.), Roche Holding (Q.B., E.C.), Roche Research and Development Center (C.C., Y.H.), and Takeda APAC Biopharmaceutical Research and Development (Q.B.), Shanghai, the Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun (R.H.), the Center of Infectious Diseases, Laboratory of Infectious and Liver Disease, Institute of Infectious Diseases, West China Hospital, Sichuan University, Chengdu (H.T.), and the Department of Medicine and State Key Laboratory of Liver Research, Queen Mary Hospital, University of Hong Kong, Hong Kong (M.-F.Y.) - all in China; the Division of Infectious Diseases, University Hospital Álvaro Cunqueiro, Galicia Sur Health Research Institute, Servizo Galego de Saúde-Universidade de Vigo, Vigo, Spain (L.E.M.A.); the Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Veterans General Hospital (S.-S.Y.), and the Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University (C.-Y.P.), Taichung, the Department of Internal Medicine, Changhua Christian Hospital, Changhua (W.-W.S.), Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung (W.-L.C.), and National Taiwan University Hospital, Taipei (J.-H.K.) - all in Taiwan; the Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea (D.J.K.); the HIV Netherlands Australia Thailand Research Collaboration, Thai Red Cross AIDS Research Center and the Center of Excellence in Tuberculosis, Faculty of Medicine, Chulalongkorn University, Bangkok (A.A.), and the Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai (A.L.) - both in Thailand; Université de Paris-Cité, Department of Hepatology, Assistance Publique-Hôpitaux de Paris, Hôpital Beaujon, Centre de Recherche sur l'Inflammation, INSERM Unité Mixte de Recherche 1149, Paris (T.A.); F. Hoffmann-La Roche, Basel, Switzerland (F. Canducci, M.T.C., F. Chughlay, K.G., N.G., P.K., R.K., M.T.); Roche Products, Welwyn Garden City (S.D., V.P., B.S., R.U., C.W.), and ID Pharma Consultancy, Yelverton (C.W.) - both in the United Kingdom; Enthera Pharmaceuticals, Milan (F. Canducci); Parexel International, Hyderabad, India (A.P.); and the New Zealand Liver Transplant Unit, Auckland City Hospital, Auckland, New Zealand (E.G.).

Background: Xalnesiran, a small interfering RNA molecule that targets a conserved region of the hepatitis B virus (HBV) genome and silences multiple HBV transcripts, may have efficacy, with or without an immunomodulator, in patients with chronic HBV infection.

Methods: We conducted a phase 2, multicenter, randomized, controlled, adaptive, open-label platform trial that included the evaluation of 48 weeks of treatment with xalnesiran at a dose of 100 mg (group 1), xalnesiran at a dose of 200 mg (group 2), xalnesiran at a dose of 200 mg plus 150 mg of ruzotolimod (group 3), xalnesiran at a dose of 200 mg plus 180 μg of pegylated interferon alfa-2a (group 4), or a nucleoside or nucleotide analogue (NA) alone (group 5) in participants with chronic HBV infection who had virologic suppression with NA therapy. The primary efficacy end point was hepatitis B surface antigen (HBsAg) loss (HBsAg level, <0.

View Article and Find Full Text PDF

Chronic Hepatitis B Genotype C Mouse Model with Persistent Covalently Closed Circular DNA.

Viruses

December 2024

The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.

Hepatitis B virus (HBV) can cause chronic infections, significantly increasing the risk of death from cirrhosis and hepatocellular carcinoma (HCC). A key player in chronic HBV infection is covalently closed circular DNA (cccDNA), a stable episomal form of viral DNA that acts as a persistent reservoir in infected hepatocytes and drives continuous viral replication. Despite the development of several animal models, few adequately replicate cccDNA formation and maintenance, limiting our understanding of its dynamics and the evaluation of potential therapeutic interventions targeting cccDNA.

View Article and Find Full Text PDF

Hepatitis B is a viral infection of the liver caused by the hepatitis B virus (HBV). Entecavir (ETV) is considered the primary therapeutic option for HBV treatment, primarily functioning by inhibiting HBV replication. Ubiquitin-specific peptidase 7 (USP7), a deubiquitinating enzyme, plays a crucial role in regulating DNA repair mechanisms.

View Article and Find Full Text PDF

Background: A multivariate predictive model was constructed using baseline and 12-week clinical data to evaluate the rate of clearance of hepatitis B surface antigen (HBsAg) at the 48-week mark in patients diagnosed with chronic hepatitis B who are receiving treatment with pegylated interferon α (PEG-INFα).

Methods: The study cohort comprised CHB patients who received pegylated interferon treatment at Mengchao Hepatobiliary Hospital, Fujian Medical University, between January 2019 and April 2024. Predictor variables were identified (LASSO), followed by multivariate analysis and logistic regression analysis.

View Article and Find Full Text PDF

The Hepatitis B surface antigen (HBsAg) as the only lipid-associated envelope protein of the Hepatitis B virus (HBV) acts as cellular attachment and entry mediator of HBV making it the main target of neutralizing antibodies to provide HBV immunity after infection or vaccination. Despite its central role in inducing protective immunity, there is however a surprising lack of comparative studies examining different HBsAgs and their ability to detect anti-HBs antibodies. On the contrary, various time-consuming complex HBsAg production protocols have been established, which result in structurally and functionally insufficiently characterized HBsAg.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!