Non-enzymatic acyl migration could be counter-productive for the preparation of structured phospholipids with docosahexaenoic acid (DHA) at a designated position. Therefore enzymatic approaches have been developed to investigate acyl migration. First, acyl migration from sn-2 to sn-1 position has been set into relief by a three step enzymatic method using a typo-selective lipase, a phospholipase A2 and a non-selective lipase. The effect of reaction temperature on acyl migration from sn-2 to sn-1 was monitored: lowering the reaction temperature from 40 to 30 degrees C allowed a reduction of DHA migration rate of 40%. Secondly, acyl migration from sn-1 to sn-2 position was negligible. This last result was obtained through the study of structured phosphatidylcholine selective deacylation using a phospholipase A2.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10529-009-9932-5DOI Listing

Publication Analysis

Top Keywords

acyl migration
24
docosahexaenoic acid
8
acid dha
8
migration sn-2
8
sn-2 sn-1
8
reaction temperature
8
acyl
6
migration
6
migration deacylation
4
deacylation phospholipids
4

Similar Publications

2-arachnadoyl glycerol (2-AG) is one of the most common endocannabinoid molecules with anti-proliferative, cytotoxic, and pro-proliferative effects on different types of tumors. Typically, it induces cell death via cannabinoid receptor 1/2 (CB1/CB2)-linked ceramide production. In breast cancer, ceramide is counterbalanced by the sphingosine-1-phosphate, and thus the mechanisms of 2-AG influence on proliferation are poorly understood.

View Article and Find Full Text PDF

Acyl-CoA oxidase 1 (ACOX1), a member of the acyl-coenzyme A oxidase family, is considered a crucial regulator whose dysregulation is implicated in the occurrence and progression of various cancers. This study aims to elucidate the impact of ACOX1 in CRC, shedding light on its potential as a therapeutic target. Through analysis of the GEO dataset, it was found that ACOX1 is significantly downregulated in colorectal cancer (CRC), and this lower expression level is associated with a worse prognosis.

View Article and Find Full Text PDF

DNA methylation of ACADS promotes immunogenic cell death in hepatocellular carcinoma.

Cell Biosci

January 2025

Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.

Background: Altered metabolism has become an important characteristic of cancer, and acyl-CoA dehydrogenase short-chain (ACADS), a regulator of lipid synthesis, is involved in carcinogenesis-associated metabolic pathways. DNA methylation is an important mechanism for silencing ACADS in various malignancies. However, the specific role of ACADS in hepatocellular carcinoma (HCC) pathogenesis remains poorly understood.

View Article and Find Full Text PDF

Complementary methods toward the selective functionalization of indole and oxindole frameworks employing an alternative strategy in heteroaryl C-H functionalizations are presented herein. This work focuses on a catalyst-controlled, site selective C-H activation/functionalization of 3-acyl indoles, wherein an amide serves as a robust and versatile directing group capable of undergoing concomitant 1,2-acyl translocation/C-H functionalization in the presence of a Rh/Ag co-catalysts to provide the cross-coupled adducts in high yields. In contrast, the use of Ir/Ag catalysts subverted the 1,2-acyl migration to afford the corresponding C2-functionalized products in good to excellent yields.

View Article and Find Full Text PDF

Clinical Significance of Acyl-CoA Dehydrogenase Short Chain and Its Anti-tumor Role in Hepatocellular Carcinoma by Inhibiting Canonical Wnt/β-Catenin Pathway.

Dig Dis Sci

January 2025

Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, No. 801 Heqing Road, Minhang District, Shanghai, 200240, China.

Background: The pathogenesis of hepatocellular carcinoma (HCC) emphasizes metabolic disorders. HCC patients showed abnormally low expression of Acyl-CoA dehydrogenase short chain (ACADS).

Objectives: This study aimed to elucidate the clinical significance and mechanistic role of ACADS in HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!