Protection of mouse bone marrow from etoposide-induced genomic damage by dexrazoxane.

Cancer Chemother Pharmacol

Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.

Published: September 2009

Purpose: The objective of the current investigation is to determine whether non-toxic doses of the catalytic topoisomerase-II inhibitor, dexrazoxane, have influence on the genomic damage induced by the anticancer topoisomerase-II poison, etoposide, on mice bone marrow cells.

Method: The scoring of micronuclei, chromosomal aberrations, and mitotic activity were undertaken as markers of cyto- and genotoxicity. Oxidative damage markers such as reduced glutathione and lipid peroxidation were assessed as a possible mechanism underlying this amelioration.

Results: Dexrazoxane pre-treatment significantly reduced the etoposide-induced micronuclei formation, chromosomal aberrations, and also the suppression of erythroblast proliferation in bone marrow cells of mice. These effects were dose dependent. Etoposide induced marked biochemical alterations characteristic of oxidative stress including enhanced lipid peroxidation and reduction in the reduced glutathione level. Prior administration of dexrazoxane ahead of etoposide challenge ameliorated these biochemical markers.

Conclusion: Based on our data presented, strategies can be developed to decrease the etoposide-induced genomic damage in normal cells using dexrazoxane.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00280-009-0934-8DOI Listing

Publication Analysis

Top Keywords

bone marrow
12
genomic damage
12
etoposide-induced genomic
8
chromosomal aberrations
8
reduced glutathione
8
lipid peroxidation
8
dexrazoxane
5
protection mouse
4
mouse bone
4
marrow etoposide-induced
4

Similar Publications

Assay for Transposase-Accessible Chromatin with sequencing (ATAC-seq) is a powerful, high-throughput technique for assessing chromatin accessibility and understanding epigenomic regulation. Neutrophils, as a crucial leukocyte type in immune responses, undergo substantial chromatin architectural changes during differentiation and activation, which significantly impact the gene expression necessary for their functions. ATAC-seq has been instrumental in uncovering key transcription factors in neutrophil maturation, revealing pathogen-specific epigenomic signatures, and identifying therapeutic targets for autoimmune diseases.

View Article and Find Full Text PDF

Macrophage infiltration and activation is a key factor in the progression of diabetic nephropathy (DN). However, aerobic glycolysis induced by m6A methylation modification plays a key role in M1-type activation of macrophages, but the specific mechanism remains unclear in DN. In this study, the expression of m6A demethylase Fto in bone marrow derived macrophages and primary kidney macrophages from db/db mice.

View Article and Find Full Text PDF

Multiple myeloma is a disease related to the proliferation of malignant plasma cells; in most patients, the disease is confined to the level of bone marrow. However, in a minority of patients, the malignant plasma cells are also localized outside the bone marrow, either at the level of peripheral blood (plasma cell leukemia) or at the level of soft tissues (extramedullary multiple myeloma). These two rare forms of aggressive MM (ultrahigh-risk (uHR) MM as MM leading to death within 24-36 months) are both associated with some molecular features and with a limited response to current treatments.

View Article and Find Full Text PDF

Background: Clonal mature B-cell lymphoproliferative disorders (B-LPDs) are a heterogeneous group of neoplasia characterized by the proliferation of mature B lymphocytes in the peripheral blood, bone marrow and/or lymphoid tissues. B-LPDs classification into different subtypes and their diagnosis is based on a multiparametric approach. However, accurate diagnosis may be challenging, especially in cases of ambiguous interpretation.

View Article and Find Full Text PDF

Background: Resistance to chemoimmunotherapy in patients with advanced non-small cell lung cancer (NSCLC) necessitates effective prognostic biomarkers. Although F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) has shown potential for efficacy assessment, it has been mainly evaluated in immuno-monotherapy setting, lacking elaborations in the scenarios of immunotherapy combined with chemotherapy. To tackle this dilemma, we aimed to build a non-invasive PET/CT-based model for stratifying tumor heterogeneity and predicting survival in advanced NSCLC patients undergoing chemoimmunotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!