Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Characterizing the formation of metabolites of 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") in different species (rat, squirrel monkey, and human) may provide insight into mechanisms of MDMA neurotoxicity. Two prominent MDMA metabolites, 3,4-dihydroxymethamphetamine (HHMA) and 4-hydroxy-3-methoxymethamphetamine (HMMA), are conjugated with glucuronic or sulfuric acid, but reference standards are not available; therefore, quantification is only possible after conjugate cleavage. Different concentrations of HHMA and HMMA were obtained in human, squirrel monkey, and rat plasma specimens when acid or enzymatic cleavage was performed. Our data document that these differences are due to species-specific influences on conjugate cleavage. Acidic hydrolysis should be used for analyzing free HHMA and HMMA in human or squirrel monkey plasma, while enzymatic hydrolysis with glucuronidase or sulfatase maximizes recovery of free HHMA and HMMA in rat plasma. Optimization of cleavage conditions showed that sulfate conjugates were more readily cleaved by acid hydrolysis and glucuronides by glucuronidase.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3163102 | PMC |
http://dx.doi.org/10.1007/s00216-009-2607-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!