A kinetically controlled diastereoselective cycloaddition between a chiral enol ether and an ortho-quinone methide (o-QM) produces a chroman spiroketal motif that is found in the core of berkelic acid, a novel matrix metalloproteinase (MMP) inhibitor and potent anticancer agent. The transformation lays the groundwork for preparation of future inhibitors aimed at distinguishing among the active sites of the twenty-three known MMP. Experimental findings suggest that the stereochemistry that emerges from cycloaddition is opposite that which results from thermodynamic ketalization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2632773PMC
http://dx.doi.org/10.1055/s-2008-1072750DOI Listing

Publication Analysis

Top Keywords

berkelic acid
8
mmp inhibitor
8
inhibitor potent
8
potent anticancer
8
anticancer agent
8
chroman spiroketal
8
spiroketal motif
8
cycloaddition strategy
4
strategy berkelic
4
acid mmp
4

Similar Publications

We successfully developed (1) scalable synthesis of the triol segment and (2) regio- and stereoselective synthesis of the tetracyclic skeleton by tandem spiroacetal/pyran formation from a simpler alkyne precursor, resulting in the achievement of concise total synthesis of (-)-berkelic acid.

View Article and Find Full Text PDF

A Concise Total Synthesis of (-)-Berkelic Acid.

Angew Chem Int Ed Engl

March 2021

Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.

Reported here is a concise total synthesis of (-)-berkelic acid in eight linear steps. This synthesis features a Catellani reaction/oxa-Michael cascade for the construction of the isochroman scaffold, a one-pot deprotection/spiroacetalization operation for the formation of the tetracyclic core structure, and a late-stage Ni-catalyzed reductive coupling for the introduction of the lateral chain. Notably, four stereocenters are established from a single existing chiral center with excellent stereocontrol during the deprotection/spiroacetalization process.

View Article and Find Full Text PDF

A rapid and facile synthesis of benzannulated 6,5-spiroketals from vinyl 1,1-diacylcyclopropanes is reported. The method utilizes mild reaction conditions with good to excellent yields and high diastereoselectivity. This methodology was then used to construct the core of berkelic acid.

View Article and Find Full Text PDF

We describe a complete account of our total synthesis and biological evaluation of (-)-berkelic acid and analogs. We delineate a synthetic strategy inspired by a potentially biomimetic union between the natural products spicifernin and pulvilloric acid. After defining optimal parameters, we executed a one-pot silver-mediated in situ dehydration of an isochroman lactol to methyl pulvillorate, the cycloisomerization of a spicifernin-like alkynol to the corresponding exocyclic enol ether, and a subsequent cycloaddition to deliver the tetracyclic core of berkelic acid.

View Article and Find Full Text PDF

A synthetic approach to the tetracyclic core of berkelic acid is reported using gold(I)-catalyzed intramolecular hydroarylation and oxidative radical cyclizations to effect the key ring-forming steps. The carboxylic acid was introduced via a late-stage palladium-catalyzed carbonylation to afford the core tetracycle with the correct relative stereochemistry for the natural product.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!