We extend a previously proposed spectral reflectance and transmittance prediction model for recto-verso prints to the case of multi-ink halftones. The model takes into account the multiple reflections and the lateral propagation of light within the paper substrate (optical dot gain) as well as the spreading of the inks according to their superposition conditions (mechanical dot gain). The model accounts for the orientation of the incident and exiting lights when traversing the halftone ink layers, which enables modeling the measuring geometry. The equations for the calibration of the model and for the predictions are presented in detail. Several experiments with inkjet prints show that the multi-ink halftone transmittance model is as accurate as the actually most performing reflectance models for halftone prints.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/josaa.26.000356 | DOI Listing |
RSC Adv
January 2025
School of Material Science and Engineering, Nanjing Tech University P. R China.
Water pollution, oxidative stress and the emergence of multidrug-resistant bacterial strains are significant global threats that require urgent attention to protect human health. Nanocomposites that combine multiple metal oxides with carbon-based materials have garnered significant attention due to their synergistic physicochemical properties and versatile applications in both environmental and biomedical fields. In this context, the present study was aimed at synthesizing a ternary metal-oxide nanocomposite consisting of silver oxide, copper oxide, and zinc oxide (ACZ-NC), along with a multi-walled carbon nanotubes modified ternary metal-oxide nanocomposite (MWCNTs@ACZ-NC).
View Article and Find Full Text PDFMode-pairing quantum key distribution (MP-QKD) circumvents the need for phase locking through post-selection pairing, still allowing it to surpass the repeaterless rate-transmittance limit. This protocol, therefore, presents a promising approach for practical QKD implementation. Without phase locking and tracking, the performance of the laser, channel, and detector critically affects the determination of the maximum pairing length in pairing strategies.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Plant Experimental Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague, Czech Republic.
A wide range of portable chlorophyll meters are increasingly being used to measure leaf chlorophyll content as an indicator of plant performance, providing reference data for remote sensing studies. We tested the effect of leaf anatomy on the relationship between optical assessments of chlorophyll (Chl) against biochemically determined Chl content as a reference. Optical Chl assessments included measurements taken by four chlorophyll meters: three transmittance-based (SPAD-502, Dualex-4 Scientific, and MultispeQ 2.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Chemistry Institute, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Ciudad de México 04510, Mexico.
In this work, we present the green synthesis of complex - derived from β-hidroxymethylidene indanones by ultrasound, which allowed for the obtaining of compounds in a shorter time and with good yields. These organotin complexes were then doped with cobalt porphine and incorporated into a poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) matrix to manufacture composite semiconductor films. The semiconductor films were characterized through atomic force microscopy, examining their topography, Knoop hardness (around 17 HK), and tensile strength, which varied from 5 × 10 to 7 × 10 Pa.
View Article and Find Full Text PDFMar Drugs
November 2024
Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, E18016 Granada, Spain.
Cornea tissue engineering is strictly dependent on the development of biomaterials that fulfill the strict biocompatibility, biomechanical, and optical requirements of this organ. In this work, we generated novel biomaterials from the squid gladius (SG), and their application in cornea tissue engineering was evaluated. Results revealed that the native SG (N-SG) was biocompatible in laboratory animals, although a local inflammatory reaction was driven by the material.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!