We fabricated a terahertz wire-grid polarizer consisting of a micrometer-pitch Al grating on a Si substrate by photolithography and wet etching. The ratio of TM and TE transmittances (extinction ratio) was over 35 dB at 0.5 THz. At the Brewster angle of the Si substrate, the polarization transmittance of a TM wave through the fabricated polarizer exceeded 95% and the extinction ratio was over 45 dB at approximately 1 THz. The fabricated polarizer has a higher extinction ratio than conventional free-standing terahertz wire-grid polarizers.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.34.000274DOI Listing

Publication Analysis

Top Keywords

terahertz wire-grid
12
extinction ratio
12
wire-grid polarizers
8
ratio thz
8
fabricated polarizer
8
polarizers micrometer-pitch
4
micrometer-pitch gratings
4
gratings fabricated
4
fabricated terahertz
4
wire-grid polarizer
4

Similar Publications

We present a new method for high precision measurements of polarization rotation in the frequency range from 0.2 to 2.2 THz using a fiber coupled time-domain THz spectrometer.

View Article and Find Full Text PDF

Terahertz (THz) technology offers a variety of applications in label-free medical diagnosis and therapy, majority of which rely on the effective medium theory that assumes biological tissues to be optically isotropic and homogeneous at the scale posed by the THz wavelengths. Meanwhile, most recent research discovered mesoscale ([Formula: see text]) heterogeneities of tissues; [Formula: see text] is a wavelength. This posed a problem of studying the related scattering and polarization effects of THz-wave-tissue interactions, while there is still a lack of appropriate tools and instruments for such studies.

View Article and Find Full Text PDF

Controlled synthesis of optical fields having nonuniform polarization distributions presents a challenging task. Here, a universal polarization transformer is demonstrated that can synthesize a large set of arbitrarily-selected, complex-valued polarization scattering matrices between the polarization states at different positions within its input and output field-of-views (FOVs). This framework comprises 2D arrays of linear polarizers positioned between isotropic diffractive layers, each containing tens of thousands of diffractive features with optimizable transmission coefficients.

View Article and Find Full Text PDF

Critical factors for terahertz polarizers include broadband operation, high transmittance, and a good extinction ratio. In this paper, using a 5 nm-wide metallic slit array with a 200 nm periodicity as a wire grid polarizer, we achieved over 95% transmittance with an average extinction ratio of 40 dB, over the entire spectrum as defined by the terahertz time-domain spectroscopy (0.4 ∼ 2 THz).

View Article and Find Full Text PDF

We propose the concept and experimentally verify the operation of terahertz quantum cascade laser sources based on intra-cavity Cherenkov difference-frequency generation on a silicon substrate with the current injection layer configured as a metal wire grid. Such a current injector configuration enables high transmission of TM-polarized terahertz radiation into the silicon substrate while simultaneously providing a low-resistivity metal contact for current injection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!