Background: The natural habitat of Staphylococcus aureus is the moist squamous epithelium in the anterior nares. About 20% of the human population carry S. aureus permanently in their noses and another 60% of individuals are intermittent carriers. The ability of S. aureus to colonize the nasal epithelium is in part due to expression of surface proteins clumping factor B (ClfB) and the iron-regulated surface determinant A (IsdA), which promote adhesion to desquamated epithelial cells present in the anterior part of the nasal vestibule. S. aureus strain Newman defective in IsdA and ClfB exhibited reduced but not completely defective adherence to squamous cells in indicating that other cell surface components might also contribute.
Results: Surface proteins IsdA, ClfB, and the serine-aspartic acid repeat proteins SdrC, SdrD and SdrE were investigated to determine their contribution to the adherence of S. aureus to desquamated nasal epithelial cells. This was achieved by expression of ClfB, IsdA, SdrC, SdrD and SdrE on the surface of the surrogate Gram-positive host Lactococcus lactis and by isolating mutants of S. aureus Newman defective in one or more factor. The level of adherence of strains to squamous cells isolated from the nares of volunteers was measured. Results consistently showed that ClfB, IsdA, SdrC and SdrD each contributed to the ability of S. aureus to adhere to squamous cells. A mutant lacking all four proteins was completely defective in adherence.
Conclusion: The ability of S. aureus Newman to adhere to desquamated nasal epithelial cells is multifactorial and involves SdrD and SdrC as well as ClfB and IsdA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2642834 | PMC |
http://dx.doi.org/10.1186/1471-2180-9-22 | DOI Listing |
Reprod Biol Endocrinol
January 2025
Department of Molecular and Developmental Medicine, Siena University, Siena, 53100, Italy.
Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Department of Surgery, Faculty of General of Medicine, Koya University, Koya, Kurdistan Region - F.R., KOY45, Iraq.
Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.
Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).
Sci Rep
January 2025
Department of Pathology, Division of Microbiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375, Wroclaw, Poland.
The process of viral entry into host cells is crucial for the establishment of infection and the determination of viral pathogenicity. A comprehensive understanding of entry pathways is fundamental for the development of novel therapeutic strategies. Standard techniques for investigating viral entry include confocal microscopy and flow cytometry, both of which provide complementary qualitative and quantitative data.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
Clear cell renal cell carcinoma is a prevalent urological malignancy, imposing substantial burdens on both patients and society. In our study, we used bioinformatics methods to select four putative target genes associated with EMT and prognosis and developed a nomogram model which could accurately predicting 5-year patient survival rates. We further analyzed proteome and single-cell data and selected PLCG2 and TMEM38A for the following experiments.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!