Outer membrane proteins (OMPs) of gram-negative bacteria are synthesized in the cytosol and must cross the periplasm before insertion into the outer membrane. The 17-kDa protein (Skp) is a periplasmic chaperone that assists the folding and insertion of many OMPs, including OmpA, a model OMP with a membrane embedded beta-barrel domain and a periplasmic alphabeta domain. Structurally, Skp belongs to a family of cavity-containing chaperones that bind their substrates in the cavity, protecting them from aggregation. However, some substrates, such as OmpA, exceed the capacity of the chaperone cavity, posing a mechanistic challenge. Here, we provide direct NMR evidence that, while bound to Skp, the beta-barrel domain of OmpA is maintained in an unfolded state, whereas the periplasmic domain is folded in its native conformation. Complementary cross-linking and NMR relaxation experiments show that the OmpA beta-barrel is bound deep within the Skp cavity, whereas the folded periplasmic domain protrudes outside of the cavity where it tumbles independently from the rest of the complex. This domain-based chaperoning mechanism allows the transport of beta-barrels across the periplasm in an unfolded state, which may be important for efficient insertion into the outer membrane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2644113PMC
http://dx.doi.org/10.1073/pnas.0809275106DOI Listing

Publication Analysis

Top Keywords

outer membrane
12
insertion outer
8
beta-barrel domain
8
unfolded state
8
periplasmic domain
8
domain
5
cavity-chaperone skp
4
skp protects
4
protects substrate
4
substrate aggregation
4

Similar Publications

Second harmonic generation (SHG) measurements using SHG-active dye molecules have recently attracted attention as a method to detect the formation of pores in phospholipid bilayers. The bilayers, in which the dye molecules are embedded in the outer leaflet, exhibit a noncentrosymmetric structure, generating SHG signals. However, when pores form, these dye molecules translocate through the pores into the inner leaflet, leading to a more centrosymmetric structure and the subsequent loss of the SHG signals.

View Article and Find Full Text PDF

Lithium enhanced plasmid-mediated conjugative transfer of antimicrobial resistance genes in Escherichia coli: Different concentrations and mechanisms.

Aquat Toxicol

January 2025

Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China. Electronic address:

Conjugative transfer, a pivotal mechanism in the transmission of antimicrobial resistance genes, is susceptible to various environmental pollutants. As an emerging contaminant, lithium (Li) has garnered much attention due to its extensive applications. This research investigated the effects of Li on conjugative transfer process, examining biochemical and omics perspectives.

View Article and Find Full Text PDF

The World Health Organization has identified multidrug-resistant bacteria as a serious global health threat. Gram-negative bacteria are particularly prone to antibiotic resistance, and their high rate of antibiotic resistance has been suggested to be related to the complex structure of their cell membrane. The outer membrane of Gram-negative bacteria contains lipopolysaccharides that protect the bacteria against threats such as antibiotics, while the inner membrane houses 20-30% of the bacterial cellular proteins.

View Article and Find Full Text PDF

Prcis: The discriminant function of glaucoma, obtained by the Laguna ONhE colorimetric program, significantly correlates with the BMO-MRW. Furthermore, the diagnostic capacity was inferior to other structural tests in POAG patients.

Purpose: To evaluate the diagnostic capability for glaucoma and the correlation between peripapillary and macular parameters using spectral domain optical coherence tomography (SD-OCT) and optic nerve head hemoglobin (OHN Hb) levels assessed by the Laguna ONhE® software using colorimetric analysis.

View Article and Find Full Text PDF

Optimizing Nanobubble Production in Ceramic Membranes: Effects of Pore Size, Surface Hydrophobicity, and Flow Conditions on Bubble Characteristics and Oxygenation.

Langmuir

January 2025

John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, New Jersey 07102, United States.

Precise control of nanobubble size is essential for optimizing the efficiency and performance of nanobubble applications across diverse fields, such as agriculture, water treatment, and medicine. Producing fine bubbles, including nanobubbles, is commonly achieved by purging gas through porous media, such as ceramic or polymer membranes. Many operational factors and membrane properties can significantly influence nanobubble production and characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!