The use of more concentrated, so-called high-gravity and very-high-gravity (VHG) brewer's worts for the manufacture of beer has economic and environmental advantages. However, many current strains of brewer's yeasts ferment VHG worts slowly and incompletely, leaving undesirably large amounts of maltose and especially maltotriose in the final beers. alpha-Glucosides are transported into Saccharomyces yeasts by several transporters, including Agt1, which is a good carrier of both maltose and maltotriose. The AGT1 genes of brewer's ale yeast strains encode functional transporters, but the AGT1 genes of the lager strains studied contain a premature stop codon and do not encode functional transporters. In the present work, one or more copies of the AGT1 gene of a lager strain were repaired with DNA sequence from an ale strain and put under the control of a constitutive promoter. Compared to the untransformed strain, the transformants with repaired AGT1 had higher maltose transport activity, especially after growth on glucose (which represses endogenous alpha-glucoside transporter genes) and higher ratios of maltotriose transport activity to maltose transport activity. They fermented VHG (24 degrees Plato) wort faster and more completely, producing beers containing more ethanol and less residual maltose and maltotriose. The growth and sedimentation behaviors of the transformants were similar to those of the untransformed strain, as were the profiles of yeast-derived volatile aroma compounds in the beers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2675207PMC
http://dx.doi.org/10.1128/AEM.01558-08DOI Listing

Publication Analysis

Top Keywords

maltose maltotriose
16
transport activity
12
transporter genes
8
agt1 genes
8
encode functional
8
functional transporters
8
untransformed strain
8
maltose transport
8
agt1
6
maltose
6

Similar Publications

Alpha-helices as alignment reporters in residual dipolar coupling analysis of proteins.

J Biomol NMR

December 2024

Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.

Inclusion of residual dipolar couplings (RDCs) during the early rounds of protein structure determination requires use of a floating alignment tensor or knowledge of the alignment tensor strength and rhombicity. For proteins with interdomain motion, such analysis can falsely hide the presence of domain dynamics. We demonstrate for three proteins, maltotriose-ligated maltose binding protein (MBP), Ca-ligated calmodulin, and a monomeric N-terminal deletion mutant of the SARS-CoV-2 Main Protease, MPro, that good alignment tensor estimates of their domains can be obtained from RDCs measured for residues that are identified as α-helical based on their chemical shifts.

View Article and Find Full Text PDF

Production of highly oxidized starch in a flow cell using a nickel anode.

Int J Biol Macromol

December 2024

CQUM-Centre of Chemistry, Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal. Electronic address:

This study emphasizes the potential of using sustainable and low-cost methods to process biopolymers, contributing to eco-friendly biorefinery technologies. In this context, the transformation of potato starch, a readily available biopolymer, into carboxylic acid starch (CAS) with high yield using an electrochemical process was achieved. As a result of the green transformation, the potato starch was oxidized into CAS, achieving 31 % oxidation of the available glycosyl groups.

View Article and Find Full Text PDF

Specialization Restricts the Evolutionary Paths Available to Yeast Sugar Transporters.

Mol Biol Evol

November 2024

Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA.

Article Synopsis
  • Functional innovation at the protein level plays a significant role in evolution, with specific constraints depending on each protein's unique history and structure.
  • The study focuses on a recent functional innovation in an α-glucoside transporter from the yeast Saccharomyces eubayanus, revealing that novel substrate transport requires complex interactions among various protein regions.
  • By analyzing genome data from 332 Saccharomycotina yeast species, the research suggests that these α-glucoside transporters evolved from a multifunctional ancestor and underwent subfunctionalization, making the acquisition of new functions challenging but possible through specific genetic changes.
View Article and Find Full Text PDF

Optimisation of quality features of new wheat beers fermented through sequential inoculation of non- yeasts.

Heliyon

September 2024

Dipartimento di Scienze Agrarie, Alimenti, Risorse Naturali e Ingegneria (DAFNE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy.

The choice of the starchy ingredients as well as that of the yeasts strongly can represent a useful tool to differentiate the final beers. Our research investigated twelve white beers obtained applying a 2-factor mixed 3-level/4-level experimental design. The first factor was the cereal mixture, with 3 combinations of barley malt (65 %) and unmalted wheat (35 % of common, durum, or emmer).

View Article and Find Full Text PDF

Developing Catalysts for the Hydrolysis of Glycosidic Bonds in Oligosaccharides Using a Spectrophotometric Screening Assay.

ACS Catal

September 2024

Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States.

In a proof-of-concept study, a method for the empirical design of polyacrylate gel catalysts with the ability to cleave 1→4 α-glycosidic bonds in di- and trisaccharides was elaborated. The study included the synthesis of a 300-gel member library based on two different cross-linkers and 10 acrylate monomers, identification of monomodal gels by dynamic light scattering, and a 96-well plate spectrophotometric screening assay to monitor the hydrolysis of chromophore-free maltose into glucose units. The composition of the matrix of the most efficient catalysts in the library was found to enable CH-π, hydrophobic, and H-bond accepting interactions during the hydrolysis as typically seen in glycosylases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!