Integrative and conjugative elements (ICEs), also called conjugative transposons, are genomic islands that excise, self-transfer by conjugation, and integrate in the genome of the recipient bacterium. The current investigation shows the intraspecies conjugative transfer of the first described ICEs in Streptococcus thermophilus, ICESt1 and ICESt3. Mitomycin C, a DNA-damaging agent, derepresses ICESt3 conjugative transfer almost 25-fold. The ICESt3 host range was determined using various members of the Firmicutes as recipients. Whereas numerous ICESt3 transconjugants of Streptococcus pyogenes and Enterococcus faecalis were recovered, only one transconjugant of Lactococcus lactis was obtained. The newly incoming ICEs, except the one from L. lactis, are site-specifically integrated into the 3' end of the fda gene and are still able to excise in these transconjugants. Furthermore, ICESt3 was retransferred from E. faecalis to S. thermophilus. Recombinant plasmids carrying different parts of the ICESt1 recombination module were used to show that the integrase gene is required for the site-specific integration and excision of the ICEs, whereas the excisionase gene is required for the site-specific excision only.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668402 | PMC |
http://dx.doi.org/10.1128/JB.01412-08 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Qingdao Institute of BioEnergy and Bioprocess Technology Chinese Academy of Sciences, Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, No. 189 Songling Road, 266101, Qingdao, CHINA.
Due to high binding energy and extremely short diffusion distance of Frenkel excitons in common organic semiconductors at early stage, mechanism of interface charge transfer-mediated free carrier generation has dominated the development of bulk heterojunction (BHJ) organic solar cells (OSCs). However, considering the advancements in materials and device performance, it is necessary to reexamine the photoelectric conversion in current-stage efficient OSCs. Here, we propose that the conjugated materials with specific three-dimensional donor-acceptor conjugated packing potentially exhibit distinctive charge photogeneration mechanism, which spontaneously split Wannier-Mott excitons to free carriers in pure phases.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Volgograd State University, University Avenue 100, Volgograd 400062, Russia.
The first excited state of conjugated donor-acceptor molecules of C3 symmetry (octupolar molecules) is doubly degenerate. Such a doublet is known to be isomorphic to a spin 1/2. It is shown that a large electric dipole moment is associated with this spin.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
ConspectusStructural DNA nanotechnology offers a unique self-assembly toolbox to construct soft materials of arbitrary complexity, through bottom-up approaches including DNA origami, brick, wireframe, and tile-based assemblies. This toolbox can be expanded by incorporating interactions orthogonal to DNA base-pairing such as metal coordination, small molecule hydrogen bonding, π-stacking, fluorophilic interactions, or the hydrophobic effect. These interactions allow for hierarchical and long-range organization in DNA supramolecular assemblies through a DNA-minimal approach: the use of fewer unique DNA sequences to make complex structures.
View Article and Find Full Text PDFPharmaceutics
December 2024
Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children's at Diamond Children's Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA.
Dysregulated inflammation and oxidative stress are strongly implicated in the pathogenesis of inflammatory bowel disease. We have developed a novel therapeutic that targets inflammation and oxidative stress. It is comprised of microRNA-146a (miR146a)-loaded cerium oxide nanoparticles (CNPs) (CNP-miR146a).
View Article and Find Full Text PDFMolecules
December 2024
College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China.
As a key means to solve energy and environmental problems, photocatalytic technology has made remarkable progress in recent years. Organic semiconductor materials offer structural diversity and tunable energy levels and thus attracted great attention. Among them, porphyrin and its derivatives show great potential in photocatalytic reactions and light therapy due to their unique large-π conjugation structure, high apparent quantum efficiency, tailorable functionality, and excellent biocompatibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!