Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: The use of (99m)Tc-macroggregated albumin for lung perfusion imaging is well established in nuclear medicine. However, there have been safety concerns over the use of blood-derived products because of potential contamination by infective agents, for example, Variant Creutzfeldt Jakob Disease. Preliminary work has indicated that Tc(CO)(5)I is primarily taken up in the lungs following intravenous administration. The aim of this study was to evaluate the biodistribution and pharmacokinetics of (99m)Tc(CO)(5)I and its potential as a lung perfusion agent.
Methods: (99m)Tc(CO)(5)I was synthesized by carbonylation of (99m)TcO(4-) at 160 atm of CO at 170 degrees C in the presence of HI for 40 min. Radiochemical purity was determined by HPLC using (99)Tc(CO)(5)I as a reference. (99m)Tc(CO)(5)I was administered by ear-vein injection to three chinchilla rabbits, and dynamic images were acquired using a gamma camera (Siemens E-cam) over 20 min. Imaging studies were also performed with (99m)Tc-labeled macroaggregated albumin ((99m)Tc-MAA) and (99m)TcO(4-) for comparison. (99m)Tc(CO)(5)I was administered intravenously to Sprague-Dawley rats, and tissue distribution studies were obtained at 15 min and 1 h postinjection. Comparative studies were performed using (99m)Tc-MAA.
Results: Radiochemical purity, assessed by HPLC, was 98%. The retention time was similar to that of (99)Tc(CO)(5)I. The dynamic images showed that 70% of (99m)Tc(CO)(5)I appeared promptly in the lungs and remained constant for at least 20 min. In contrast, (99m)TcO(4-) rapidly washed out of the lungs after administration. As expected (99m)Tc-MAA showed 90% lung accumulation. The percentage of injected dose per gram of organ +/-S.D. at 1 h for (99m)Tc(CO)(5)I was as follows: blood, 0.22+/-0.02; lung, 12.8+/-2.87; liver, 0.8+/-0.15; heart, 0.15+/-0.01; kidney, 0.47+/-0.08. The percentage of injected dose per organ +/-S.D. at 1 h was as follows: lung, 22.47+/-2.31; liver, 10.53+/-1.8; heart, 0.18+/-0.01; kidney, 1.2+/-0.17. Tissue distribution studies with (99m)Tc-MAA showed 100% lung uptake.
Conclusion: (99m)Tc(CO)(5)I was synthesized with a high radiochemical purity and showed a high accumulation in the lungs. Further work on the mechanism and optimization of lung uptake of (99m)Tc-pentacarbonyl complexes is warranted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nucmedbio.2008.10.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!