Mesenchymal stem cells (MSCs) are multipotent cells that differentiate into a variety of lineages including myocytes and vascular endothelial cells. However, little information is available regarding the therapeutic potential of MSCs in patients with atrioventricular block (AVB). We investigated whether local implantation of MSCs improves AV conduction in a rat model of complete AVB. Complete AVB was achieved by injection of ethanol into the AV nodal region of Lewis rats. Five days after ethanol injection, 2 x 10(6) of MSCs (MSC group) or vehicle (Control group) were injected into the AV nodal region. Animals were monitored by electrocardiograms for 14 days, and physiological and histological examinations were performed. The 1:1 AV conduction was recovered in 5 of 15 rats (33%) in the MSC group during the followup period, whereas no improvement was observed in the control group. MSC transplantation significantly decreased collagen deposition in the AV node, which was associated with a marked decrease in transforming growth factor-beta1 expression. In vitro experiments demonstrated that MSCs secreted a large amount of antifibrotic factors such as hepatocyte growth factor and interleukin-10, and MSC conditioned medium inhibited the growth of adult cardiac fibroblasts. In addition, local injection of MSC conditioned medium recovered AV conduction in 2 of 15 rats (13%). MSC transplantation improved AV conduction in a rat model of complete AVB, at least in part through antifibrotic paracrine effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3727/096368908787236594 | DOI Listing |
PLoS One
January 2025
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
Myelination is a key biological process wherein glial cells such as oligodendrocytes wrap myelin around neuronal axons, forming an insulative sheath that accelerates signal propagation down the axon. A major obstacle to understanding myelination is the challenge of visualizing and reproducibly quantifying this inherently three-dimensional process in vitro. To this end, we previously developed artificial axons (AAs), a biocompatible platform consisting of 3D-printed hydrogel-based axon mimics designed to more closely recapitulate the micrometer-scale diameter and sub-kilopascal mechanical stiffness of biological axons.
View Article and Find Full Text PDFPLoS Biol
January 2025
Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
Successful resolution of approach-avoidance conflict (AAC) is fundamentally important for survival, and its dysregulation is a hallmark of many neuropsychiatric disorders, and yet the underlying neural circuit mechanisms are not well elucidated. Converging human and animal research has implicated the anterior/ventral hippocampus (vHPC) as a key node in arbitrating AAC in a region-specific manner. In this study, we sought to target the vHPC CA1 projection pathway to the nucleus accumbens (NAc) to delineate its contribution to AAC decision-making, particularly in the arbitration of learned reward and punishment signals, as well as innate signals.
View Article and Find Full Text PDFJ Biophotonics
January 2025
The College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, China.
Diffuse optical tomography (DOT) enables the in vivo quantification of tissue chromophores, specifically the discernment of oxy- and deoxy-hemoglobin (HbO and HbR, correspondingly). This specific criterion is useful in detecting and predicting early-stage neoadjuvant breast cancer treatment response. To address the issues of the limited channels in the fiber-dependent breast DOT system and limited signal-to-noise ratio in the camera-dependent systems, we hereby present a camera-based lock-in detection scheme to achieve dynamic DOT with improved SNR, which adopted orthogonal frequency division multiplexing technology.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2025
McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA.
Cardiovascular diseases (CVDs) were responsible for approximately 19 million deaths in 2020, marking an increase of 18.7% since 2010. Biological decellularized patches are common therapeutic solutions for CVD such as cardiac and valve defects.
View Article and Find Full Text PDFEur J Trauma Emerg Surg
January 2025
Division of Traumatology, Surgical Critical Care and Emergency Surgery, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, USA.
Purpose: Our study explores the utilization of objective tools for preoperative assessment of elderly patients by Emergency General Surgeons (EGS).
Methods: A descriptive cross-sectional survey was conducted via the European Society for Trauma and Emergency Surgery (ESTES) Research Committee. EGS were invited through the ESTES members' mailing list and social media platforms.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!