Sertoli cells enhance formation of capillary-like structures in vitro.

Cell Transplant

Department of Pathology & Cell Biology, College of Medicine, University of South Florida, Tampa, FL 33612, USA.

Published: February 2009

Sertoli cells isolated from the testis (referred to as extratesticular Sertoli cells) have been shown to facilitate allo- and xenogeneic cell transplantations. It appears likely that the ability of these cells to enhance the success of cell engraftment is due, in part, to the retention of their intratesticular functions of trophic support and immunoprotection. Sertoli cells also are involved in the regulation of angiogenesis in the testis, which may also contribute to enhanced cell engraftment success facilitated by extratesticular Sertoli cells. Because the maintenance of the cell's intratesticular angiogenic function has not yet been evaluated for extratesticular Sertoli cells, this study examined the cell's ability to enhance angiogenesis in vitro. Sertoli cell conditioned media were derived from isolated rat Sertoli cell cultures and used in a rat aortic model of induced angiogenesis, in endothelial and smooth muscle cell monocultures, and in endothelial smooth muscle cocultures. An angiogenic rat cytokine array identified angiogenic factors in the control and conditioned media. Aorta sections incubated with Sertoli cell conditioned media showed a marked increase in the formation of capillary-like structures when compared to controls. Likewise, endothelial cells incubated in conditioned media organized into capillary-like structures not observed when incubated in control media. In coculture, smooth muscle cells were associated with endothelial cell-derived capillary-like structures only when incubated in conditioned media. Cytokine arrays indicated the presence and a qualitative increase of specific angiogenic growth factors in Sertoli cell conditioned media not observed in control media. Results indicate that extratesticular Sertoli cells retain their intratesticular angiogenic function in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.3727/096368908787236512DOI Listing

Publication Analysis

Top Keywords

sertoli cells
28
conditioned media
24
capillary-like structures
16
extratesticular sertoli
16
sertoli cell
16
cell conditioned
12
smooth muscle
12
sertoli
11
cells
9
cells enhance
8

Similar Publications

Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.

Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).

View Article and Find Full Text PDF

Background: Transgender and gender diverse (TGD) people seek gender-affirming care at any age to manage gender identities or expressions that differ from their birth gender. Gender-affirming hormone treatment (GAHT) and gender-affirming surgery may alter reproductive function and/or anatomy, limiting future reproductive options to varying degrees, if individuals desire to either give birth or become a biological parent.

Objective And Rationale: TGD people increasingly pursue help for their reproductive questions, including fertility, fertility preservation, active desire for children, and future options.

View Article and Find Full Text PDF

Transcriptional Profiling of Testis Development in Pre-Sexually-Mature Hezuo Pig.

Curr Issues Mol Biol

December 2024

College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.

Spermatogenesis is an advanced biological process, relying on intricate interactions between somatic and germ cells in testes. Investigating various cell types is challenging because of cellular heterogeneity. Single-cell RNA sequencing (scRNA-seq) offers a method to analyze cellular heterogeneity.

View Article and Find Full Text PDF

Phosphodiesterases, particularly the type 5 isoform (PDE5), have gained recognition as pivotal regulators of male reproductive physiology, exerting significant influence on testicular function, sperm maturation, and overall fertility potential. Over the past several decades, investigations have expanded beyond the original therapeutic intent of PDE5 inhibitors for erectile dysfunction, exploring their broader reproductive implications. This narrative review integrates current evidence from in vitro studies, animal models, and clinical research to clarify the roles of PDEs in effecting the male reproductive tract, with an emphasis on the mechanistic pathways underlying cyclic nucleotide signaling, the cellular specificity of PDE isoform expression, and the effects of PDE5 inhibitors on Leydig and Sertoli cell functions.

View Article and Find Full Text PDF

Multi-omics analysis and experimental verification reveal testicular fatty acid metabolism disorder in non-obstructive azoospermia.

Zool Res

January 2025

Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210000, China.

Increasing evidence implicates disruptions in testicular fatty acid metabolism as a contributing factor in non-obstructive azoospermia (NOA), a severe form of male infertility. However, the precise mechanisms linking fatty acid metabolism to NOA pathogenesis have not yet been fully elucidated. Multi-omics analyses, including microarray analysis, single-cell RNA sequencing (scRNA-seq), and metabolomics, were utilized to investigate disruptions in fatty acid metabolism associated with NOA using data from public databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!