Mechanisms by which viruses counter innate host defense responses generally involve inhibition of one or more components of the interferon (IFN) system. Multiple steps in the induction and amplification of IFN signaling are targeted for inhibition by viral proteins, and many of the IFN antagonists have direct or indirect effects on activation of latent cytoplasmic transcription factors. Rotavirus nonstructural protein NSP1 blocks transcription of type I IFNalpha/beta by inducing proteasome-dependent degradation of IFN-regulatory factors 3 (IRF3), IRF5, and IRF7. In this study, we show that rotavirus NSP1 also inhibits activation of NFkappaB and does so by a novel mechanism. Proteasome-mediated degradation of inhibitor of kappaB (IkappaBalpha) is required for NFkappaB activation. Phosphorylated IkappaBalpha is a substrate for polyubiquitination by a multisubunit E3 ubiquitin ligase complex, Skp1/Cul1/F-box, in which the F-box substrate recognition protein is beta-transducin repeat containing protein (beta-TrCP). The data presented show that phosphorylated IkappaBalpha is stable in rotavirus-infected cells because infection induces proteasome-dependent degradation of beta-TrCP. NSP1 expressed in isolation in transiently transfected cells is sufficient to induce this effect. Targeted degradation of an F-box protein of an E3 ligase complex with a prominent role in modulation of innate immune signaling and cell proliferation pathways is a unique mechanism of IFN antagonism and defines a second strategy of immune evasion used by rotaviruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2627925PMC
http://dx.doi.org/10.1371/journal.ppat.1000280DOI Listing

Publication Analysis

Top Keywords

proteasome-dependent degradation
12
rotavirus nsp1
8
nsp1 inhibits
8
nfkappab activation
8
inducing proteasome-dependent
8
degradation beta-trcp
8
novel mechanism
8
mechanism ifn
8
ifn antagonism
8
phosphorylated ikappabalpha
8

Similar Publications

belongs to the NOD-like receptor family and is recognized as a modulator of innate immune mechanisms. In this study, we firstly report that () acts as a negative regulator in the antiviral immune response. is ubiquitously expressed across tested tissues, displaying particularly high expression in the intestine, spleen, gill and kidney.

View Article and Find Full Text PDF

Background: In recent years, the emphasis has shifted to understanding the role of N1-methyladenosine (m1A) in tumor progression as little is known about its regulatory effect on mRNA and its role in the metastasis of colorectal cancer (CRC).

Methods: We performed methylated RNA immunoprecipitation sequencing of tumor tissues and tumor-adjacent normal tissues from three patients with CRC to determine the m1A profile of mRNA in CRC. The expression of diaphanous-related formin 3 (DIAPH3) and its correlation with clinicopathological characteristics of CRC were evaluated using immunohistochemistry and online datasets.

View Article and Find Full Text PDF

Hypoxia-triggered ERRα acetylation enhanced its oncogenic role and promoted progression of renal cell carcinoma by coordinating autophagosome-lysosome fusion.

Cell Death Dis

January 2025

Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, China.

Estrogen-related receptor α (ERRα) is dysregulated in many types of cancer and exhibits oncogenic activity by promoting tumorigenesis and metastasis of cancer cells. However, its defined role in renal cell carcinoma (RCC) has not been fully elucidated. To reveal the biological function of ERRα and determine the underlying regulatory mechanism in RCC, the quantitative proteomics analysis and mechanism investigation were conducted.

View Article and Find Full Text PDF

USP1 promotes pancreatic cancer progression and autophagy by deubiquitinating ATG14.

J Biol Chem

January 2025

Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi, China. Electronic address:

Pancreatic ductal adenocarcinoma (PDAC) is characterized by extremely poor prognosis, high mortality and limited therapeutic strategy. Autophagy is hyperactivated in PDAC and targeting autophagy are emerging as promising therapeutic strategies. The dysfunction of deubiquitinase USP1 results in tumorigenesis and chemotherapy resistance.

View Article and Find Full Text PDF

Inhibition of methionine aminopeptidase in C2C12 myoblasts disrupts cell integrity via increasing endoplasmic reticulum stress.

Biochim Biophys Acta Mol Cell Res

January 2025

Designing Future Health Initiative, Center for Promotion of Innovation Strategy, Head Office of Enterprise Partnerships, Tohoku University, Miyagi 980-8579, Japan. Electronic address:

Proteasome-dependent protein degradation and the digestion of peptides by aminopeptidases are essential for myogenesis. Methionine aminopeptidases (MetAPs) are uniquely involved in, both, the proteasomal degradation of proteins and in the regulation of translation (via involvement in post-translational modification). Suppressing MetAP1 and MetAP2 expression inhibits the myogenic differentiation of C2C12 myoblasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!