Background & Objective: Previous studies on natural products had mainly dealt with their antimicrobial activity and studies on the interference of these bioactive compounds with host-bacterial interaction is limited. The present study was undertaken to investigate the effect of the sterols and fatty acids present in the chloroform fraction of crude methanol extract of Hemidesmus indicus root (CHI) on Salmonella enterica serovar Typhimurium (S. Typhimurium) mediated apoptosis in a murine macrophage cell line (P388D1).
Methods: Bacterial sensitivity test was carried out with different concentrations of CHI and the optimum dose was fixed as 100 mug/ml for CHI, which was safe on host cells as the CD(50) (50% of cell death) dose of CHI was determined to be 500 mug/ml in the P388D1 cell line.
Results: The CHI-treated bacteria had negligible cytotoxicity and were less potent to invade and proliferate intracellularly. Murine macrophages infected with wild bacteria, stained with Hoechst 33258, had swollen and damaged morphology with characteristic apoptotic bodies whereas macrophages infected with treated bacteria had comparative normal architecture. Immunofluorescence and transmission electron micrographs both confirmed that CHI-treated bacteria were defective and smaller than the wild bacteria. Ultrastructures of P388D1 cells infected with wild bacteria showed many ingested bacteria and characteristic Salmonella-containing vacuoles (SCV). Some cells had condensed or fragmented nuclei with swollen mitochondria, whereas most of the cells infected with treated bacteria were normal in morphology and a few had internalized bacteria, but the typical bacteria laden SCV was not observed in cells infected with CHI-treated S. Typhimurium.
Interpretation & Conclusion: Our results showed that the choloroform fraction of H. indicus root blocked the cytotoxic activity of S. Typhimurium in a macrophage cell line. More studies need to be done to elaborate and confirm our findings.
Download full-text PDF |
Source |
---|
Front Vet Sci
December 2024
Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile.
D-lactic acidosis is associated with fermentative disturbances and is often marked by elevated levels of D-lactic acid in the blood, ruminal fluid, and synovial fluid in cattle. D-lactic acidosis is linked to various inflammatory manifestations, and although the causative factors have been extensively explored, the exact pathogenesis of the associated inflammation remains elusive. Notably, less attention has been given to D-lactate, a stereoisomer found in the plasma of affected animals, which may lead to D-lactic acidosis.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
Macrophage phagocytosis plays a role in cancer immunotherapy. The phagocytic activity of macrophages, regulated by circadian clock genes, shows time-dependent variation. Intervening in the circadian clock machinery of macrophages is a potentially novel approach to cancer immunotherapy; however, data on this approach are scarce.
View Article and Find Full Text PDFTheranostics
January 2025
State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China.
White matter has emerged as a key therapeutic target in ischemic stroke due to its role in sensorimotor and cognitive outcomes. Our recent findings have preliminarily revealed a potential link between microglial HDAC3 and white matter injury following stroke. However, the mechanisms by which microglial HDAC3 mediates these effects remain unclear.
View Article and Find Full Text PDFTheranostics
January 2025
Neurooncology Unit, Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid 28041, Spain.
Glioblastoma IDH wild type (GBM IDH wt) has a poor prognosis and a strongly associated with inflammatory processes. Inflammatory molecules generate positive feedback with tumor cells fueling tumor growth as well as recruitment of immune cells that promote aggressiveness. Although the role of many inflammatory molecules is well known, there are many macromolecules, such as the S100A proteins, whose role is only now beginning to be established.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China.
Postinterventional restenosis is a major challenge in the treatment of peripheral vascular disease. Current anti-restenosis drugs inhibit neointima hyperplasia but simultaneously impair endothelial repair due to indiscrminative cytotoxity. Stem cell-derived exosomes provide multifaceted therapeutic effects by delivering functional miRNAs to endothelial cells, macrophages, and vascular smooth muscle cells (VSMCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!