HMGA2 maintains oncogenic RAS-induced epithelial-mesenchymal transition in human pancreatic cancer cells.

Am J Pathol

Department of Regeneration Medicine, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan.

Published: March 2009

Pancreatic cancer is a highly aggressive malignancy due to elevated mitotic activities and epithelial-mesenchymal transition (EMT). Oncogenic RAS and transforming growth factor-beta signaling are implicated in these malignant features. The mechanisms that underlie EMT need to be addressed since it promotes tissue invasion and metastasis. The high-mobility group A protein 2 (HMGA2) is a non-histone chromatin factor that is primarily expressed in undifferentiated tissues and tumors of mesenchymal origin. However, its role in EMT in pancreatic cancer is largely unknown. Here we report that HMGA2 is involved in EMT maintenance in human pancreatic cancer cells. Specific knockdown of HMGA2 inhibited cell proliferation, leading to an epithelial-state transition that restores cell-cell contact due to E-cadherin up-regulation. Consistently, an inverse correlation between HMGA2-positive cells and E-cadherin-positive cells was found in cancer tissues. Inhibition of the RAS/MEK pathway also induced an epithelial transition, together with HMGA2 down-regulation. Transcriptional repressors of the E-cadherin gene, such as SNAIL, decreased after HMGA2 knockdown since HMGA2 directly activated the SNAlL gene promoter. The decrease of SNAIL after RAS/MEK inhibition was suppressed by HMGA2 overexpression. Further, let-7 microRNA-mediated HMGA2 down-regulation had no effect on the prevention of the transformed phenotype in these cells. These data shed light on the importance of HMGA2 in reversibly maintaining EMT, suggesting that HMGA2 is a potential therapeutic target for the treatment of pancreatic cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2665746PMC
http://dx.doi.org/10.2353/ajpath.2009.080523DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
20
hmga2
11
epithelial-mesenchymal transition
8
human pancreatic
8
cancer cells
8
knockdown hmga2
8
hmga2 down-regulation
8
cancer
6
pancreatic
5
cells
5

Similar Publications

Background: The search for early and minimally invasive diagnostic approaches to pancreatic cancer (PC) remains an important issue. One of the most promising directions is to find a sensitive key in the metabolic changes during widespread causes of PC, i.e.

View Article and Find Full Text PDF

Background And Aims: Benign lesions, inflammation, cysts and pseudocysts, as well as neoplasms of the exocrine and endocrine parts of the pancreas can be easily identified using cytological methods. The sensitivity and specificity can be increased with the help of additional examination methods. The sensitivity of intraoperative rapid cytology reaches about 99%.

View Article and Find Full Text PDF

Background And Aim: The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer.

View Article and Find Full Text PDF

Development of a bacteria-nanosapper for the active delivery of ZIF-8 particles containing therapeutic genes for cancer immune therapy.

Acta Pharm Sin B

December 2024

School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China.

Specific tumor-targeted gene delivery remains an unsolved therapeutic issue due to aberrant vascularization in tumor microenvironment (TME). Some bacteria exhibit spontaneous chemotaxis toward the anaerobic and immune-suppressive TME, which makes them ideal natural vehicles for cancer gene therapy. Here, we conjugated ZIF-8 metal-organic frameworks encapsulating eukaryotic murine interleukin 2 () expression plasmid onto the surface of VNP20009, an attenuated strain with well-documented anti-cancer activity, and constructed a TME-targeted delivery system named /ZIF-8@.

View Article and Find Full Text PDF

Magnetic chromatography was exploited to fractionate suspensions of magnetoliposomes (SML: lumen-free lipid-encapsulated clusters of multiple magnetic iron-oxide nanoparticles) improving their colloidal properties and relaxivity (magnetic resonance image contrast capability). Fractionation (i) removed sub-populations that do not contribute to the MRI response, and thus (ii) enabled evaluation of the size-dependence of relaxivity for the MRI-active part, which was surprisingly weak in the 55-90 nm range. MC was therefore implemented for processing multiple PEGylated SML types having average sizes ranging from 85 to 105 nm, which were then shown to have strongly size-dependent uptake in an pancreatic cancer model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!