alpha1,6-Fucosylation plays key roles in many biological functions, as evidenced by the study of alpha1,6-fucosyltransferase (Fut8) knockout (Fut8(-/-)) mice. Phenotypically, Fut8(-/-) mice exhibit emphysema-like changes in the lung, and severe growth retardation. Fut8(-/-) cells also show marked dysregulation of the TGF-beta1 receptor, EGF receptor, integrin activation and intracellular signalling, all of which can be rescued by reintroduction of Fut8. The results of the present study demonstrated that vascular endothelial growth factor receptor-2 (VEGFR-2) expression was significantly suppressed in Fut8(-/-) mice, suggesting that Fut8 was required for VEGFR-2 expression. The expression of VEGFR-2 mRNA and protein was consistently down-regulated by knockdown of the Fut8 gene with small interference RNA in A549 cells, as well as in TGP49 cells, suggesting that suppression occurs at the level of transcription. In contrast, the expression level of ceramide, an inducer of cell apoptosis, was increased in the lungs of Fut8(-/-) mice. The terminal transferase dUTP nick end-labelling (TUNEL) assay was used to identify apoptotic cells. The number of TUNEL-positive septal epithelia and endothelia cells was significantly increased in the alveolar septa of lungs from Fut8(-/-) mice when in comparison with lungs from wild-type mice. It is well known that, in emphysema, ceramide expression can be greatly enhanced by blockade of the VEGFR-2. Thus, suppression of VEGFR-2 expression may provide a novel explanation for the emphysema-like changes in Fut8(-/-) mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jb/mvp022 | DOI Listing |
Mol Med
November 2024
Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116011, PR China.
Background: Activation of pericytes leads to renal interstitial fibrosis, but the regulatory mechanism of pericytes in the progression from AKI to CKD remains poorly understood. CD36 activation plays a role in the progression of CKD. However, the significance of CD36 during AKI-CKD, especially in pericyte, remains to be fully defined.
View Article and Find Full Text PDFAntib Ther
October 2024
Antagen Pharmaceuticals, Inc., Canton, MA 02021, United States.
Glycoconj J
October 2024
Department of Molecular Biochemistry and Clinical Investigation, Osaka University Graduate School of Medicine, 1-7, Yamada-Oka, Suita, Osaka, 565-0871, Japan.
Recent findings in glycobiology revealed direct evidence of the involvement of oligosaccharide changes in human diseases, including liver diseases. Fucosylation describes the attachment of a fucose residue to a glycan or glycolipid. We demonstrated that fucosylated proteins are useful serum biomarkers for nonalcoholic fatty liver disease.
View Article and Find Full Text PDFJ Biol Chem
August 2024
Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan. Electronic address:
α1,6-Fucosyltransferase (Fut8) is the enzyme responsible for catalyzing core fucosylation. Exogenous L-fucose upregulates fucosylation levels through the GDP-fucose salvage pathway. This study investigated the relationship between core fucosylation and immunoglobulin G (IgG) amounts in serum utilizing WT (Fut8), Fut8 heterozygous knockout (Fut8), and Fut8 knockout (Fut8) mice.
View Article and Find Full Text PDFStem Cells
September 2024
Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!