Reduced nicotinamide adenine dinucleotide, NADH, is a major electron donor in the oxidative phosphorylation and glycolytic pathways in cells. As a result, there has been recent resurgence in employing intrinsic NADH fluorescence as a natural probe for a range of cellular processes that include apoptosis, cancer pathology, and enzyme kinetics. Here, we report on two-photon fluorescence lifetime and polarization imaging of intrinsic NADH in breast cancer (Hs578T) and normal (Hs578Bst) cells for quantitative analysis of the concentration and conformation (i.e., free-to-enzyme-bound ratios) of this coenzyme. Two-photon fluorescence lifetime imaging of intracellular NADH indicates sensitivity to both cell pathology and inhibition of the respiratory chain activities using potassium cyanide (KCN). Using a newly developed non-invasive assay, we estimate the average NADH concentration in cancer cells (168+/-49 microM) to be approximately 1.8-fold higher than in breast normal cells (99+/-37 microM). Such analyses indicate changes in energy metabolism and redox reactions in normal breast cells upon inhibition of the respiratory chain activity using KCN. In addition, time-resolved associated anisotropy of cellular autofluorescence indicates population fractions of free (0.18+/-0.08) and enzyme-bound (0.82+/-0.08) conformations of intracellular NADH in normal breast cells. These fractions are statistically different from those in breast cancer cells (free: 0.25+/-0.08; bound: 0.75+/-0.08). Comparative studies on the binding kinetics of NADH with mitochondrial malate dehydrogenase and lactate dehydrogenase in solution mimic our findings in living cells. These quantitative studies demonstrate the potential of intracellular NADH dynamics (rather than intensity) imaging for probing mitochondrial anomalies associated with neurodegenerative diseases, cancer, diabetes, and aging. Our approach is also applicable to other metabolic and signaling pathways in living cells, without the need for cell destruction as in conventional biochemical assays.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2739809 | PMC |
http://dx.doi.org/10.1016/j.jphotobiol.2008.12.010 | DOI Listing |
Alzheimers Dement
December 2024
The University of Texas at San Antonio, San Antonio, TX, USA.
Background: Neurodegeneration is characterized by the progressive loss of neurons. However, the mechanisms by which neurons die in Alzheimer's disease (AD) remain elusive. Disrupted iron homeostasis is associated with accelerated cognitive decline, amyloid beta deposition, and AD progression, but its pathogenic relevance is poorly understood.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong 226019, P. R. China.
As cancer progresses, detached cancer cells metastasize through the circulatory system, followed by intricate metabolic rewiring for adaptation and propagation. The dynamic process of metastasis, despite being responsible for the majority of cancer-related deaths, still remains inadequately comprehended. Here, we proposed a microfluidic platform combining the dual-probe strategy for the detection of metastasize-related metabolic levels at single-cell resolution.
View Article and Find Full Text PDFNicotinamide adenine dinucleotide (NAD(H)) and its metabolites function as crucial regulators of physiological processes, allowing cells to adapt to environmental changes such as nutritional deficiencies, genotoxic factors, disruptions in circadian rhythms, infections, inflammation, and exogenous substances. Here, we investigated whether elevated NAD(H) levels in oocytes enhance their quality and improve developmental competence following in vitro fertilization (IVF). Bovine cumulus-oocyte complexes (COCs) were matured in a culture medium supplemented with 0-100 μM nicotinamide mononucleotide (NMN), a precursor of NAD(H).
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
Our group has synthesized a pleiotropic synthetic nanozyme redox mediator we term a "pleozyme" that displays multiple enzymatic characteristics, including acting as a superoxide dismutase mimetic, oxidizing NADH to NAD, and oxidizing HS to polysulfides and thiosulfate. Benefits have been seen in acute and chronic neurological disease models. The molecule is sourced from coconut-derived activated charcoal that has undergone harsh oxidization with fuming nitric acid, which alters the structure and chemical characteristics, yielding 3-8 nm discs with broad redox potential.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
Idiopathic pulmonary fibrosis (IPF) is a prevalent interstitial lung disease with high mortality. CD38 is a main enzyme for intracellular nicotinamide adenine dinucleotide (NAD) degradation in mammals. It has been reported that CD38 participated in pulmonary fibrosis through promoting alveolar epithelial cells senescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!