Calcium-activated potassium channels: regulation by calcium.

J Bioenerg Biomembr

Department of Membrane Biochemistry and Biophysics, Merck Institute for Therapeutic Research, Rahway, New Jersey 07065.

Published: August 1991

A wide variety of calcium-activated K channels has been described and can be conveniently separated into three classes based on differences in single-channel conductance, voltage dependence of channel opening, and sensitivity to blockers. Large-conductance calcium-activated K channels typically require micromolar concentrations of calcium to open, and their sensitivity to calcium increases with membrane depolarization, suggesting that they may be involved in repolarization events. Small-conductance calcium-activated K channels are generally more sensitive to calcium at negative membrane potentials, but their sensitivity to calcium is independent of membrane potential, suggesting that they may be involved in regulating membrane properties near the resting potential. Intermediate-conductance calcium-activated K channels are a loosely defined group, where membership is determined because a channel does not fit in either of the other two groups. Within each broad group, variations in calcium sensitivity and single-channel conductance have been observed, suggesting that there may be families of closely related calcium-activated K channels. Kinetic studies of the gating of calcium-activated potassium channels have revealed some basic features of the mechanisms involved in activation of these channels by calcium, including the number of calcium ions participating in channel opening, the number of major conformations of the channels involved in the gating process, and the number of transition pathways between open and closed states. Methods of analysis have been developed that may allow identification of models that give accurate descriptions of the gating of these channels. Although such kinetic models are likely to be oversimplifications of the behavior of a large macromolecule, these models may provide some insight into the mechanisms that control the gating of the channel, and are subject to falsification by new data.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00785810DOI Listing

Publication Analysis

Top Keywords

calcium-activated channels
20
channels
10
calcium-activated potassium
8
potassium channels
8
calcium
8
single-channel conductance
8
channel opening
8
sensitivity calcium
8
suggesting involved
8
channels kinetic
8

Similar Publications

The NMDAR-BK channelosomes as regulators of synaptic plasticity.

Biochem Soc Trans

January 2025

Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud-sección Medicina, Universidad de La Laguna, Tenerife, ES-38071, Spain.

Large conductance voltage- and calcium-activated potassium channels (BK channels) are extensively found throughout the central nervous system and play a crucial role in various neuronal functions. These channels are activated by a combination of cell membrane depolarisation and an increase in intracellular calcium concentration, provided by calcium sources located close to BK. In 2001, Isaacson and Murphy first demonstrated the coupling of BK channels with N-methyl-D-aspartate receptors (NMDAR) in olfactory bulb neurons.

View Article and Find Full Text PDF

From Atrial Small-conductance Calcium-activated Potassium Channels to New Antiarrhythmics.

Eur Cardiol

December 2024

Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark.

Despite significant advances in its management, AF remains a major healthcare burden affecting millions of individuals. Rhythm control with antiarrhythmic drugs or catheter ablation has been shown to improve symptoms and outcomes in AF patients, but current treatment options have limited efficacy and/or significant side-effects. Novel mechanism-based approaches could potentially be more effective, enabling improved therapeutic strategies for managing AF.

View Article and Find Full Text PDF

Background And Purpose: TMEM16A chloride channels constitute a depolarising mechanism in arterial smooth muscle cells (SMCs) and contractile cerebral pericytes. TMEM16A pharmacology is incompletely defined. We elucidated the mode of action and selectivity of a recently identified positive allosteric modulator of TMEM16A (PAM_16A) and of a range of TMEM16A inhibitors.

View Article and Find Full Text PDF

Identification of a binding site for small molecule inhibitors targeting human TRPM4.

Nat Commun

January 2025

Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL, and Dept. Fundamental Microbiology, Faculty of Biology and Medicine, UNIL, Cubotron, Rt. de la Sorge, Lausanne, Switzerland.

Transient receptor potential (TRP) melastatin 4 (TRPM4) protein is a calcium-activated monovalent cation channel associated with various genetic and cardiovascular disorders. The anthranilic acid derivative NBA is a potent and specific TRPM4 inhibitor, but its binding site in TRPM4 has been unknown, although this information is crucial for drug development targeting TRPM4. We determine three cryo-EM structures of full-length human TRPM4 embedded in native lipid nanodiscs without inhibitor, bound to NBA, and an anthranilic acid derivative, IBA.

View Article and Find Full Text PDF

Potential of emodepside for vector-borne disease control.

Malar J

January 2025

Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.

Background: Emodepside is an anthelmintic used in veterinary medicine that is currently under investigation in human clinical trials for the treatment of soil-transmitted helminths and possibly Onchocerca volvulus. Emodepside targets the calcium-activated voltage-gated potassium slowpoke 1 (SLO-1) channels of presynaptic nerves of pharynx and body wall muscle cells of nematodes leading to paralysis, reduced locomotion and egg laying, starvation, and death. Emodepside also has activity against Drosophila melanogaster SLO-1 channels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!