Dechlorination of 1,2,3- and 1,2,4-trichlorobenzene by the white-rot fungus Trametes versicolor.

J Hazard Mater

Departament d'Enginyeria Química and Institut de Ciència i Tecnologia Ambiental, Escola Tècnica Superior d'Enginyeria (ETSE), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.

Published: July 2009

The degradation of 1,2,3-, 1,3,5- and 1,2,4-trichlorobenzene (TCB) by the white-rot fungus Trametes versicolor was studied. Time course experiments showed a degradation rate of 2.27 and 2.49 nmol d(-1)mg(-1) dry weight of biomass during the first 4d of incubation in cultures spiked with 6 mg L(-1) of 1,2,3- and 1,2,4-TCB, respectively. A high percent of degradation of 91.1% (1,2,3-TCB) and 79.6 (1,2,4-TCB) was obtained after 7d. However, T. versicolor was not able to degrade 1,3,5-TCB under the conditions tested. For a range of concentrations of 1,2,4-TCB between 6.5 and 23 mg L(-1), a complete dechlorination of the molecule was observed. Cytochrome P450 monooxygenase appears to be involve in the first step of 1,2,4-TCB degradation, as evidenced by marked inhibition of both dechlorination and degradation of 1,2,4-TCB in the presence of the known cyt P450 inhibitors 1-aminobenzotriazole and piperonyl butoxide. Four intermediates formed from 1,2,4-TCB degradation were detected the second day of incubation, which did not appear the seventh day: 2,3,5-trichloromuconate, its corresponding carboxymethylenebutenolide, 2- or 5-chloro-4-oxo-2-hexendioic acid and 2- or 5-chloro-5-hydroxy-4-oxo-2-pentenoic acid. Based on these results, a degradation pathway of 1,2,4-TCB through cyt P450 monooxygenase and epoxide hydrolase was proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2008.12.076DOI Listing

Publication Analysis

Top Keywords

white-rot fungus
8
fungus trametes
8
trametes versicolor
8
p450 monooxygenase
8
124-tcb degradation
8
cyt p450
8
degradation
7
124-tcb
7
dechlorination 123-
4
123- 124-trichlorobenzene
4

Similar Publications

In recent years, oxidoreductase enzymes such as laccases have received considerable attention for their ability to degrade and eliminate organic micropollutants from contaminated water in a process known as enzyme-based wastewater treatment. Thus, methods to produce high laccase activity in water are a point of focus, with white-rot fungi being highlighted as a tool in this context. This study, therefore, explored the applied approach of direct addition of mushroom spawn of the white-rot fungi Pleurotus ostreatus into water and its potential for laccase production under different conditions.

View Article and Find Full Text PDF

Studies on the treatment of anaerobically digested sludge by white-rot fungi: evaluation of the effect of Phanerochaete chrysosporium and Trametes versicolor.

Microb Cell Fact

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.

Background: The composition of anaerobically digested sludge is inherently complex, enriched with structurally complex organic compounds and nitrogenous constituents, which are refractory to biodegradation. These characteristics limit the subsequent rational utilization of resources from anaerobically digested sludge. White-rot fungi (WRF) have garnered significant research interest due to their exceptional capacity to degrade complex and recalcitrant organic pollutants.

View Article and Find Full Text PDF

Inhibitory effects of cadmium and hydrophilic cadmium telluride quantum dots on the white rot fungus .

Heliyon

January 2025

Department of Microbiology (Biocenter 1, Viikinkaari 9), Faculty of Agriculture and Forestry, University of Helsinki, Finland.

The white rot fungus was investigated for its ability to decolorize the reactive textile dye Reactive Black 5 (RB5) that was co-exposed to CdCl and quantum dots (QDs) consisting of a CdTe core capped with two different hydrophilic organic ligands (NAC and MPA). Without co-exposure, completely decolorizes RB5 within 9 days. The highest inhibitory effect was found for soluble CdCl with an EC of 583 μg l, followed by MPA-QDs (10,628 μg l) and NAC-QDs (17,575 μg l).

View Article and Find Full Text PDF

Tree bark is a crucial tissue that defends tree stems from invasions by microorganisms. However, our understanding of the constitutive chemical defense mechanisms of the tree barks remains limited. Our group recently discovered that the inner bark of Sorbus commixta exhibited potent inhibitory effects on the growth of the white-rot fungus, Trametes versicolor.

View Article and Find Full Text PDF

Phanerochaete chrysosporium hyphae bio-crack, endocytose and metabolize plastic films.

J Hazard Mater

January 2025

School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Ecological Civilization Research Institute, Hefei University of Technology, Hefei 230009, China.

Numerous studies have focused on the effect and mechanism of plastic degradation; due to their high persistence, petroleum-based plastics are difficult for microbes to mineralize. Although such plastics have been demonstrated to be mineralized by white rot fungus, the reactions at the molecular level remain unknown. Here, we show the whole mineralization model of polyethylene film, that can be summarized as follows: 1) white rot fungus colonizes on polyethylene film, using additives as dissimilated carbon sources; 2) the fungus secretes extracellular enzymes protein, combining with stearic acid as electron donor, causes oxidation and cracking of polyethylene film; and 3) partial dissociated sub-microplastic debris access to cells, further oxidizes in sequential actions of intracellular enzymes, and ultimately mineralize via β-oxidation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!