Background: T(H)17 cells are of pathologic relevance in autoimmune disorders and presumably also in allergy and asthma. Regulatory T (Treg) cells, in contrast, suppress inflammatory and allergen-driven responses. Despite these disparate functions, both T-cell subsets have been shown to be dependent on TGF-beta for their development.
Objective: The aim of the study was to analyze the differentiation and function of human T(H)17 cells in comparison with other T(H) cell subsets.
Methods: Naive human CD4(+) T cells were differentiated in vitro, and gene expression was analyzed by means of quantitative real-time PCR, ELISA, and immunofluorescence. The function of T(H) cell subsets was assessed by monitoring the response of primary bronchial epithelial cells in coculture experiments.
Results: In vitro differentiated T(H)17 cells differ from Treg and other T(H) cells in their potency to induce IL-6 and IL-1beta expression in primary bronchial epithelial cells. TGF-beta, IL-1beta, IL-6, and IL-23 are necessary during T(H)17 cell differentiation to acquire these functions, including IL-17 production. In contrast, TGF-beta alone is necessary and sufficient to induce the transcription factor RORC2. This transcription factor, previously thought to be specific for T(H)17 cells, is also expressed in Treg cells, CD25(+) cells, cytotoxic T cells, and natural killer T cells.
Conclusion: This study demonstrates mechanisms of differentiation to human T(H)17 cells, a subset that effectively and uniquely modulates the function of primary bronchial epithelial cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jaci.2008.12.017 | DOI Listing |
Immunohorizons
January 2025
Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States.
Dysregulated differentiation of naïve CD4+ T cells into T helper 17 (Th17) cells is likely a key factor predisposing to many autoimmune diseases. Therefore, better understanding how Th17 differentiation is regulated is essential to identify novel therapeutic targets and strategies to identify individuals at high risk of developing autoimmunity. Here, we extend our prior work using chemical inhibitors to provide mechanistic insight into a novel regulator of Th17 differentiation, the kinase dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A).
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Medical Immunology, Medical University of Gdansk, Gdansk, Poland.
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease, characterized by impaired wound repair, tissue remodeling and fibrosis. Immune system may participate in the development and progression of the disease as indicated by altered activity in IPF sufferers. This study investigates the immune response to the BNT162b2 COVID-19 vaccine in patients with IPF compared to healthy controls, with a particular focus on evaluation of antibody responses, interferon-gamma release, cytokine profiling and a broad panel of immune cell subpopulations.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China.
Background: Huanglian-ejiao decoction (HED) is a Chinese traditional medicinal formula evolved from the Shanghan Lun (Treatise on Febrile Diseases). However, HED ultimate mechanism of action remained indistinct. Therefore, this study aimed to investigate whether HED could exert anti-inflammatory effects on 2,4,6-Trinitrobenzenesulfonic acid (TNBS)-induced colitis (UC) model through the regulation of CD4T subsets and gut microbiota.
View Article and Find Full Text PDFCurr Cardiol Rev
January 2025
Department of Pharmacy, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad (UP)-244001, India.
Cardiovascular diseases remain a significant reason for illness and death globally. Although certain interleukins have been extensively researched about cardiovascular disease (CVD), new findings have identified unique members of the interleukin family that could potentially play a role in cardiovascular well-being and ailments. This review discusses the current understanding of the role of these recently identified interleukins, such as IL-27, IL-31, IL-32, IL-33, and the IL-28 group (IL-28A, IL-28B, IL-29), in the development of cardiovascular diseases.
View Article and Find Full Text PDFInt J Parasitol
January 2025
The helminth Trichinella spiralis, through its excretory-secretory (ES L1) products, induces immune regulatory mechanisms that modulate the host's immune response not only to itself, but also to bystander antigens, foreign or self in origin, which can result in the alleviation of inflammatory diseases. Under the influence of ES L1, dendritic cells (DCs) acquire a tolerogenic phenotype and the capacity to induce Th2 and regulatory responses. Since ES L1 products represent a complex mixture of proteins and extracellular vesicles (TsEVs) the aim of this study was to investigate the impact of TsEVs, isolated from ES L1 products, on phenotypic and functional characteristics of DCs and to elucidate whether TsEVs could reproduce the immunomodulatory effects of the complete ES L1 product.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!