We examined the structure of lipid-raft membranes in respiratory syncytial virus infected cells. Cholesterol depletion studies using methyl-beta-cyclodextrin suggested that membrane cholesterol was required for virus filament formation, but not inclusion bodies. In addition, virus filament formation coincided with elevated 3-hydroxy-3-methylglutaryl-coenzyme A reductase expression, suggesting an increase in requirement for endogenous cholesterol synthesis during virus assembly. Lipid raft membranes were examined by mass spectrometry, which suggested that virus infection induced subtle changes in the lipid composition of these membrane structures. This analysis revealed increased levels of raft-associated phosphatidylinositol (PI) and phosphorylated PI during RSV infection, which correlated with the appearance of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-triphosphate (PIP(3)) within virus inclusion bodies, and inhibiting the synthesis of PIP(3) impaired the formation of progeny virus. Collectively, our analysis suggests that RSV infection induces specific changes in the composition of raft-associated lipids, and that these changes play an important role in virus maturation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virol.2008.12.017DOI Listing

Publication Analysis

Top Keywords

virus
9
changes lipid
8
lipid composition
8
respiratory syncytial
8
syncytial virus
8
virus infection
8
virus filament
8
filament formation
8
inclusion bodies
8
rsv infection
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!