[Neuroethics in Japan--current view and future visions].

Brain Nerve

Research Institute of Science and Technology for Society Japan Science and Technology Agency, 18F Resona-Maruha Bldg. 1-1-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.

Published: January 2009

Neuroethics was originated in 2002 in the United States. In 2004, the Research Institute of Science and Technology for Society (RISTEX), a subsection of Japan Science and Technology Agency (JST), launched a neuroethics research group as the first research group to focus on the academic study and public engagement in neuroethics in Japan. In this article, the authors summarize the activities of RISTEX, JST during the brief history of neuroethics in Japan, and subsequently compare their current activities in neuroethics to those in other Western countries. We also introduce brief results of public survey of neuroscience research in Japan that suggest the significance of ethics and education regarding neuroscience to overview the future vision on neuroethics. We further discuss the role of neuroscientists in the future progress in neuroethics.

Download full-text PDF

Source

Publication Analysis

Top Keywords

science technology
8
neuroethics japan
8
neuroethics
7
[neuroethics japan--current
4
japan--current view
4
view future
4
future visions]
4
visions] neuroethics
4
neuroethics originated
4
originated 2002
4

Similar Publications

Combining Hard Shell with Soft Core to Enhance Enzyme Activity and Resist External Disturbances.

Adv Sci (Weinh)

January 2025

Department of Cardiology, The First People's Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang, 317500, China.

Immobilizing enzymes onto solid supports having enhanced catalytic activity and resistance to harsh external conditions is considered as a promising and critical method of broadening enzymatic applications in biosensing, biocatalysis, and biomedical devices; however, it is considerably hampered by limited strategies. Here, a core-shell strategy involving a soft-core hexahistidine metal assembly (HmA) is innovatively developed and characterized with encapsulated enzymes (catalase (CAT), horseradish peroxidase, glucose oxidase (GOx), and cascade enzymes (CAT+GOx)) and hard porous shells (zeolitic imidazolate framework (ZIF), ZIF-8, ZIF-67, ZIF-90, calcium carbonate, and hydroxyapatite). The enzyme-friendly environment provided by the embedded HmA proves beneficial for enhanced catalytic activity, which is particularly effective in preserving fragile enzymes that will have been deactivated without the HmA core during the mineralization of porous shells.

View Article and Find Full Text PDF

CTB6 Confers Cold Tolerance at the Booting Stage by Maintaining Tapetum Development in Rice.

Adv Sci (Weinh)

January 2025

Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.

Rice is highly sensitive to cold stress, particularly at the booting stage, which significantly threatens rice production. In this study, we cloned a gene, CTB6, encoding a lipid transfer protein involved in cold tolerance at the booting stage in rice, based on our previous fine-mapped quantitative trait locus (QTL) qCTB10-2. CTB6 is mainly expressed in the tapetum and young microspores of the anther.

View Article and Find Full Text PDF

Establishing the protein-protein interaction network sheds light on functional genomics studies by providing insights from known counterparts. However, the rice interactome has barely been studied due to the lack of massive, reliable, and cost-effective methodologies. Here, the development of a barcode-indexed PCR coupled with HiFi long-read sequencing pipeline (BIP-seq) is reported for high throughput Protein Protein Interaction (PPI)identification.

View Article and Find Full Text PDF

A Homozygous Variant in HSD17B1 Identified in Women With Poor Ovarian Response.

Clin Genet

January 2025

NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, ChangSha, China.

An increasing number of patients utilizing in vitro fertilization (IVF) and assisted reproductive technology (ART) are characterized as impaired or poor ovarian responders (PORs). Owing to its unclear molecular etiology, the management of patients with age-related ovarian characteristics remains a controversial and complex clinical concern. Therefore, it is important to identify and understand the etiological causes behind POR to develop more effective and efficient management strategies for these patients.

View Article and Find Full Text PDF

Photobiomodulation Combined With Human Umbilical Cord Mesenchymal Stem Cells Modulates the Polarization of Microglia.

J Biophotonics

January 2025

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Neuromodulation and Neurorepair, Integrative regeneration laboratory, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.

Neuroinflammation plays a key role in the development of neurodegenerative diseases, with microglia regulating this process through pro-inflammatory M1 and anti-inflammatory M2 phenotypes. Studies have shown that human umbilical cord mesenchymal stem cells (hUCMSCs) modulate neuroinflammation by secreting anti-inflammatory cytokines. Photobiomodulation (PBM), a non-invasive therapy, has demonstrated significant potential in alleviating neuroinflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!