We have successfully designed a simple peptide sequence that forms highly stable coiled-coil heterotetramers. Our model system is based on the GCN4-pLI parallel coiled-coil tetramer, first described by Kim and coworkers (Harbury et al., Science 1993;262:1401-1407). We introduced glutamates at all of the e and c heptad positions of one sequence (ecE) and lysines at the same positions in a second sequence (ecK). Based on a modeling study, these sidechains are close enough in space to form structure-stabilizing salt bridges. We show that ecE and ecK are highly unstable by themselves but form very stable parallel helical tetramers when mixed, as judged by circular dichroism, analytical ultracentrifugation, and disulfide crosslinking studies. The origin of the difference in stabilities between the homomeric structures and the heteromeric structures comes from a combination of the relief of electrostatic repulsions with concomitant formation of electrostatic attractive interactions based on pH and NaCl screening experiments. We quantify the stability of the heterotetrameric coiled coil from a thermodynamic analysis and compare the finding to other similar coiled-coil systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2708066 | PMC |
http://dx.doi.org/10.1002/pro.30 | DOI Listing |
Commun Biol
July 2023
Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
Proper organization of intracellular assemblies is fundamental for efficient promotion of biochemical processes and optimal assembly functionality. Although advances in imaging technologies have shed light on how the centrosome is organized, how its constituent proteins are coherently architected to elicit downstream events remains poorly understood. Using multidisciplinary approaches, we showed that two long coiled-coil proteins, Cep63 and Cep152, form a heterotetrameric building block that undergoes a stepwise formation into higher molecular weight complexes, ultimately generating a cylindrical architecture around a centriole.
View Article and Find Full Text PDFSci Adv
September 2022
School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK.
Despite continuing progress in kinesin enzyme mechanochemistry and emerging understanding of the cargo recognition machinery, it is not known how these functions are coupled and controlled by the α-helical coiled coils encoded by a large component of kinesin protein sequences. Here, we combine computational structure prediction with single-particle negative-stain electron microscopy to reveal the coiled-coil architecture of heterotetrameric kinesin-1 in its compact state. An unusual flexion in the scaffold enables folding of the complex, bringing the kinesin heavy chain-light chain interface into close apposition with a tetrameric assembly formed from the region of the molecule previously assumed to be the folding hinge.
View Article and Find Full Text PDFMol Cells
April 2021
Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea.
that tethers mitochondria to the plasma membrane and plays a key role in mitochondrial fission. The main components of MECA are Num1 and Mdm36, and it is known that Mdm36 binds to Num1 to enhance mitochondrial tethering. To better understand the biochemical characteristics of the Num1-Mdm36 complex at the molecular level, we purified the coiled-coil domain of Num1, full-length Mdm36, and Num1-Mdm36 complex and identified the oligomeric state and stoichiometric characteristics of the Num1-Mdm36 complex by chemical crosslinking, size-exclusion chromatography coupled with multi-angle light scattering, and isothermal titration calorimetry.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2020
The Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA. Electronic address:
Bacteriophage T4 encodes orthologs of the proteins Rad50 (gp46) and Mre11 (gp47), which form a heterotetrameric complex (MR) that participates in the processing of DNA ends for recombination-dependent DNA repair. Crystal and high-resolution cryo-EM structures of Rad50 have revealed DNA binding sites near the dimer interface of Rad50 opposite of Mre11, and near the base of the coiled-coils that extend out from the globular head domain. An analysis of T4-Rad50 using sequenced-based algorithms to identify DNA binding residues predicts that a conserved region of positively charged residues near the C-terminus, distal to the observed binding sites, interacts with DNA.
View Article and Find Full Text PDFMol Biol Cell
April 2020
Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892.
The heterotetrameric adaptor protein complex 4 (AP-4) is a component of a protein coat associated with the -Golgi network (TGN). Mutations in AP-4 subunits cause a complicated form of autosomal-recessive hereditary spastic paraplegia termed AP-4-deficiency syndrome. Recent studies showed that AP-4 mediates export of the transmembrane autophagy protein ATG9A from the TGN to preautophagosomal structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!