Mouse horizontal cells are coupled by gap junctions composed of connexin57. These gap junctions are regulated by ambient light via multiple neuromodulators including dopamine. In order to analyze the distribution and structure of horizontal cell gap junctions in the mouse retina, and examine the effects of light adaptation on gap junction density, we developed antibodies that detect mouse retinal connexin57. Using immunohistochemistry in retinal slices, flat-mounted retinas, and dissociated retinal cells, we showed that connexin57 is expressed in the dendrites and axon terminal processes of mouse horizontal cells. No staining was found in retinas of connexin57-deficient mice. Significantly more connexin57-positive puncta were found in the distal than in the proximal outer plexiform layer, indicating a higher level of expression in axon terminal processes than in the dendrites. We also examined the gap junctions using immunoelectron microscopy and showed that connexin57 does not form hemichannels in the horizontal cell dendritic tips. Light adaptation resulted in a significant increase in the number of connexin57-immunoreactive plaques in the outer plexiform layer, consistent with previously reported effects of light adaptation on connexin57 expression in the mouse retina. This study shows for the first time the detailed location of connexin57 expression within mouse horizontal cells, and provides the first ultrastructural data on mouse horizontal cell gap junctions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.21965DOI Listing

Publication Analysis

Top Keywords

gap junctions
24
mouse horizontal
20
horizontal cells
16
horizontal cell
12
light adaptation
12
connexin57 expressed
8
mouse
8
junctions mouse
8
cell gap
8
mouse retina
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!