An unsteady microfluidic T-form mixer driven by pressure disturbances was designed and investigated. The performance of the mixer was examined both through numerical simulation and experimentation. Linear Stokes equations were used for these low Reynolds number flows. Unsteady mixing in a micro-channel of two aqueous solutions differing in concentrations of chemical species was described using a convection-dominated diffusion equation. The task was greatly simplified by employing linear superimposition of a velocity field for solving a scalar species concentration equation. Low-order-based numerical codes were found not to be suitable for simulation of a convection-dominated mixing process due to erroneous computational dissipation. The convection-dominated diffusion problem was addressed by designing a numerical algorithm with high numerical accuracy and computational-cost effectiveness. This numerical scheme was validated by examining a test case prior to being applied to the mixing simulation. Parametric analysis was performed using this newly developed numerical algorithm to determine the best mixing conditions. Numerical simulation identified the best mixing condition to have a Strouhal number (St)of 0.42. For a T-junction mixer (with channel width = 196 μm), about 75% mixing can be finished within a mixing distance of less than 3 mm (i.e. 15 channel width) at St = 0.42 for flow with a Reynolds number less than 0.24. Numerical results were validated experimentally by mixing two aqueous solutions containing yellow and blue dyes. Visualization of the flow field under the microscope revealed a high level of agreement between numerical simulation and experimental results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2631182 | PMC |
http://dx.doi.org/10.1088/0960-1317/18/4/045015 | DOI Listing |
Biometrics
January 2025
School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai 200433, China.
As a commonly employed method for analyzing time-to-event data involving functional predictors, the functional Cox model assumes a linear relationship between the functional principal component (FPC) scores of the functional predictors and the hazard rates. However, in practical scenarios, such as our study on the survival time of kidney transplant recipients, this assumption often fails to hold. To address this limitation, we introduce a class of high-dimensional partially linear functional Cox models, which accommodates the non-linear effects of functional predictors on the response and allows for diverging numbers of scalar predictors and FPCs as the sample size increases.
View Article and Find Full Text PDFHeliyon
January 2025
Institute of Mathematics, Henan Academy of Sciences, Zhengzhou, 450046, China.
This study examines the behavior of the Casson nanofluid bioconvection flow around a spinning disc under various influences, including gyrotactic microorganisms, multiple slips, and thermal radiation. Notably, it accounts for the reversible nature of the flow and incorporates the esterification process. The aim of this study is to investigate the influence of reversible chemical reactions on the flow behavior of a Casson nanofluid in the presence of bioconvective microorganisms over a spinning disc.
View Article and Find Full Text PDFiScience
January 2025
Department of Artificial Intelligence, Hanyang University, Seoul 04763, South Korea.
We present a Fourier neural operator (FNO)-based surrogate solver for the efficient optimization of wavefronts in tunable metasurface controls. Existing methods, including the Gerchberg-Saxton algorithm and the adjoint optimization, are often computationally demanding due to their iterative processes, which require numerical simulations at each step. Our surrogate solver overcomes this limitation by providing highly accurate gradient estimations with respect to changes in tunable meta-atoms without the need for direct simulations.
View Article and Find Full Text PDFMath Biosci Eng
December 2024
Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Str. 2, D-06217 Merseburg, Germany.
In this article, we reconsider the classical target cell limited dynamical within-host HIV model, solely taking into account the interaction between $ {\rm{CD}}4^{+} $ T cells and virus particles. First, we summarize some analytical results regarding the corresponding dynamical system. For that purpose, we proved some analytical results regarding the system of differential equations as our first main contribution.
View Article and Find Full Text PDFMath Biosci Eng
December 2024
Institute of of Information Technology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159 Street, building 34, 02-776 Warsaw, Poland.
In this paper, we introduce and analyze a discrete-time model of an epidemic spread in a heterogeneous population. As the heterogeneous population, we define a population in which we have two groups which differ in a risk of getting infected: a low-risk group and a high-risk group. We construct our model without discretization of its continuous-time counterpart, which is not a common approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!