Despite considerable evidence for contributions of both Zn(2+) and Ca(2+) in ischemic brain damage, the relative importance of each cation to very early events in injury cascades is not well known. We examined Ca(2+) and Zn(2+) dynamics in hippocampal slices subjected to oxygen-glucose deprivation (OGD). When single CA1 pyramidal neurons were loaded via a patch pipette with a Ca(2+)-sensitive indicator (fura-6F) and an ion-insensitive indicator (AlexaFluor-488), small dendritic fura-6F signals were noted after several (approximately 6-8) minutes of OGD, followed shortly by sharp somatic signals, which were attributed to Ca(2+) ("Ca(2+) deregulation"). At close to the time of Ca(2+) deregulation, neurons underwent a terminal increase in plasma membrane permeability, indicated by loss of AlexaFluor-488 fluorescence. In neurons coloaded with fura-6F and a Zn(2+)-selective indicator (FluoZin-3), progressive rises in cytosolic Zn(2+) levels were detected before Ca(2+) deregulation. Addition of the Zn(2+) chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) significantly delayed both Ca(2+) deregulation and the plasma membrane permeability increases, indicating that Zn(2+) contributes to the degenerative signaling. Present observations further indicate that Zn(2+) is rapidly taken up into mitochondria, contributing to their early depolarization. Also, TPEN facilitated recovery of the mitochondrial membrane potential and of field EPSPs after transient OGD, and combined removal of Ca(2+) and Zn(2+) markedly extended the duration of OGD tolerated. These data provide new clues that Zn(2+) accumulates rapidly in neurons during slice OGD, is taken up by mitochondria, and contributes to consequent mitochondrial dysfunction, cessation of synaptic transmission, Ca(2+) deregulation, and cell death.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2637403PMC
http://dx.doi.org/10.1523/JNEUROSCI.4604-08.2009DOI Listing

Publication Analysis

Top Keywords

ca2+ deregulation
16
cell death
8
oxygen-glucose deprivation
8
zn2+
8
ca2+
8
ca2+ zn2+
8
plasma membrane
8
membrane permeability
8
ogd
5
intracellular zn2+
4

Similar Publications

Hyperglucagonemia and glucagon hypersecretion in early type 2 diabetes result from multifaceted dysregulation of pancreatic mouse α-cells.

Pflugers Arch

November 2024

Instituto de Investigación, Desarrollo E Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Avenida de La Universidad S/N, 03202, Elche, Spain.

Hyperglucagonemia has been implicated in the pathogenesis of type 2 diabetes (T2D). In contrast to β-cells, studies on the function of the pancreatic α-cell in T2D are scarce. Consequently, the processes underlying hyperglucagonemia and α-cell dysfunction are largely unknown, limiting the appropriate design of specific pharmacological and therapeutic strategies.

View Article and Find Full Text PDF

The scratch test is used as an experimental in vitro model of mechanical damage to primary neuronal cultures to study the mechanisms of cell death in damaged areas. The involvement of NMDA receptors in processes leading to delayed neuronal death, due to calcium dysregulation and synchronous mitochondrial depolarization, has been previously demonstrated. In this study, we explored the neuroregenerative potential of Pro-Gly-Pro (PGP)-an endogenous regulatory peptide with neuroprotective and anti-inflammatory properties and a mild chemoattractant effect.

View Article and Find Full Text PDF

Background: Astronauts in Earth's orbit experience microgravity, resulting in a decline of skeletal muscle mass and function. On Earth, models simulating microgravity have shown that the extent of the loss in muscle force is greater than the loss in muscle mass. The reasons behind this disproportionate loss of muscle force are still poorly understood.

View Article and Find Full Text PDF

Altered Expression of Thyroid- and Calcium Ion Channels-Related Genes in Rat Testes by Short-Term Exposure to Commercial Herbicides Paraquat or 2,4-D.

J Xenobiot

October 2024

Maestría en Ciencias en Sistemas del Ambiente, Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala de Xicohténcatl 90000, Mexico.

Exposure to pesticides such as paraquat and 2,4-dichlorophenoxyacetic acid (2,4-D) has been linked to harmful health effects, including alterations in male reproduction. Both herbicides are widely used in developing countries and have been associated with reproductive alterations, such as disruption of spermatogenesis and steroidogenesis. The thyroid axis and Ca-permeable ion channels play a key role in these processes, and their disruption can lead to reproductive issues and even infertility.

View Article and Find Full Text PDF

A transmitochondrial sodium gradient controls membrane potential in mammalian mitochondria.

Cell

November 2024

Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain. Electronic address:

Eukaryotic cell function and survival rely on the use of a mitochondrial H electrochemical gradient (Δp), which is composed of an inner mitochondrial membrane (IMM) potential (ΔΨmt) and a pH gradient (ΔpH). So far, ΔΨmt has been assumed to be composed exclusively of H. Here, using a rainbow of mitochondrial and nuclear genetic models, we have discovered that a Na gradient equates with the H gradient and controls half of ΔΨmt in coupled-respiring mammalian mitochondria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!