A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microtubules modulate melatonin receptors involved in phase-shifting circadian activity rhythms: in vitro and in vivo evidence. | LitMetric

AI Article Synopsis

  • MT1 and MT2 melatonin receptors in CHO cells maintain sensitivity to melatonin re-challenge even after chronic exposure when microtubules are depolymerized, which typically leads to receptor desensitization.
  • Microtubule depolymerization also enhances melatonin-induced PKC activity and GTP exchange on Gi proteins, indicating a potential role in modulating receptor activity.
  • Experiments on Long Evans rats show that disrupting microtubules in the suprachiasmatic nucleus increases the effectiveness of melatonin in phase-shifting circadian rhythms, suggesting a link between microtubule dynamics and circadian regulation.

Article Abstract

MT1 melatonin receptors expressed in Chinese hamster ovary (CHO) cells remain sensitive to a melatonin re-challenge even following chronic melatonin exposure when microtubules are depolymerized in the cell, an exposure that normally results in MT1 receptor desensitization. We extended our findings to MT2 melatonin receptors using both in vitro and in vivo approaches. Using CHO cells expressing human MT2 melatonin receptors, microtubule depolymerization prevents the loss in the number of high potency states of the receptor when compared to melatonin-treated cells. In addition, microtubule depolymerization increases melatonin-induced PKC activity but not PI hydrolysis via Gi proteins similar to that shown for MT1Rs. Furthermore, microtubule depolymerization in MT2-CHO cells enhances the exchange of GTP on Gi-proteins using a photoaffinity analog of GTP. To test whether microtubules are capable of modulating melatonin-induced phase-shifts, microtubules are depolymerized specifically within the suprachiasmatic nucleus of the hypothalamus (SCN) of the Long Evans rat and the efficacy of melatonin to phase shift their circadian activity rhythms was assessed and compared to animals with intact SCN microtubules. We find that microtubule depolymerization in the SCN using either Colcemid or nocodazole enhances the efficacy of 10 pm melatonin to phase-shift the activity rhythms of the Long Evans rat. No enhancement occurs in the presence of beta-lumicolchicine, the inactive analog of Colcemid. Taken together, these data suggest that microtubule dynamics can modulate melatonin-induced phase shifts of circadian activity rhythms which may explain, in part, why circadian disturbances occur in individuals afflicted with diseases associated with microtubule disturbances.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2707086PMC
http://dx.doi.org/10.1111/j.1600-079X.2008.00644.xDOI Listing

Publication Analysis

Top Keywords

melatonin receptors
16
activity rhythms
16
microtubule depolymerization
16
circadian activity
12
melatonin
8
vitro vivo
8
cho cells
8
microtubules depolymerized
8
mt2 melatonin
8
long evans
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!