Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The tetrasaccharide 1, a substructure of ganglioside GQ1b alpha, shows a remarkable affinity for the myelin-associated glycoprotein (MAG) and was therefore selected as starting point for a lead optimization program. In our search for structurally simplified and pharmacokinetically improved mimics of 1, modifications of the core disaccharide, the alpha(2-->3)- and the alpha(2-->6)-linked sialic acid were synthesized. Biphenylmethyl and (S)-lactate were identified as suitable replacements for the alpha(2-->6)-linked sialic acid. Combined with a core modification and the earlier found aryl amide substituent in the 9-position of the alpha(2-->3)-linked sialic acid, high affinity MAG antagonists were identified. All mimics were tested in a competitive target-based binding assay, providing relative inhibitory potencies (rIP). Compared to the reference tetrasaccharide 1, the rIPs of the most potent antagonists 59 and 60 are enhanced nearly 400-fold. Their K(D)s determined in surface plasmon resonance experiments are in the low micromolar range. These results are in semiquantitative agreement with molecular modeling studies. This new class of glycomimetics will allow to validate the role of MAG in the axon regeneration process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm801058n | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!