Contrast-medium-enhanced digital mammography (CEDM) is an image subtraction technique which might help unmasking lesions embedded in very dense breasts. Previous works have stated the feasibility of CEDM and the imperative need of radiological optimization. This work presents an extension of a former analytical formalism to predict contrast-to-noise ratio (CNR) in subtracted mammograms. The goal is to optimize radiological parameters available in a clinical mammographic unit (x-ray tube anode/filter combination, voltage, and loading) by maximizing CNR and minimizing total mean glandular dose (D(gT)), simulating the experimental application of an iodine-based contrast medium and the image subtraction under dual-energy nontemporal, and single- or dual-energy temporal modalities. Total breast-entrance air kerma is limited to a fixed 8.76 mGy (1 R, similar to screening studies). Mathematical expressions obtained from the formalism are evaluated using computed mammographic x-ray spectra attenuated by an adipose/glandular breast containing an elongated structure filled with an iodinated solution in various concentrations. A systematic study of contrast, its associated variance, and CNR for different spectral combinations is performed, concluding in the proposal of optimum x-ray spectra. The linearity between contrast in subtracted images and iodine mass thickness is proven, including the determination of iodine visualization limits based on Rose's detection criterion. Finally, total breast-entrance air kerma is distributed between both images in various proportions in order to maximize the figure of merit CNR2/D(gT). Predicted results indicate the advantage of temporal subtraction (either single- or dual-energy modalities) with optimum parameters corresponding to high-voltage, strongly hardened Rh/Rh spectra. For temporal techniques, CNR was found to depend mostly on the energy of the iodinated image, and thus reduction in D(gT) could be achieved if the spectral energy of the noniodinated image is decreased and the breast-entrance air kerma is evenly distributed between both acquisitions. Predicted limits, in terms of iodine concentration, are found to guarantee the visualization of common clinical angiogenic concentrations in the breast.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1118/1.3003063 | DOI Listing |
Phys Med Biol
May 2021
Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, 13083-859, Campinas, Brazil.
Monte Carlo (MC) simulations are employed extensively in breast dosimetry studies. In the energy interval of interest in mammography energy deposition is predominantly caused by the photoelectric effect, and the corresponding cross sections used by the MC codes to model this interaction process have a direct influence on the simulation results. The present work compares two photoelectric cross section databases in order to estimate the systematic uncertainty, related to breast dosimetry, introduced by the choice of cross sections for photoabsorption.
View Article and Find Full Text PDFMed Phys
February 2010
Instituto de Fisica, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
This phantom study simulates contrast-medium-enhanced digital subtraction mammography (CEDM) and compares subtracted image quality and total mean glandular dose for two alternative spectral combinations available in a GE Senographe DS mammography unit. The first choice takes advantage of large iodine attenuation at low photon energies and uses traditionally available spectra (anode/filter combinations Mo/Mo at 25 kV and Rh/Rh at 40 kV, "Mo25-Rh40"). The second choice, selected from a previous analytical optimization, includes harder spectra obtained by adding external filtration to traditional beams (Rh/Rh at 34 kV and Rh/Rh+5 mm of Al at 45 kV, "Rh34-Rh45H").
View Article and Find Full Text PDFMed Phys
December 2008
Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico.
Contrast-medium-enhanced digital mammography (CEDM) is an image subtraction technique which might help unmasking lesions embedded in very dense breasts. Previous works have stated the feasibility of CEDM and the imperative need of radiological optimization. This work presents an extension of a former analytical formalism to predict contrast-to-noise ratio (CNR) in subtracted mammograms.
View Article and Find Full Text PDFAppl Radiat Isot
December 2002
Department of Nuclear Science, National Tsing-Hua University, Taiwan.
Estimation of mean-glandular dose (MGD) has been investigated in recent years due to the potential risks of radiation-induced carcinogenesis associated with the mammographic examination for diagnostic radiology. In this study, a new technique for immediate readout of breast entrance skin air kerma (BESAK) using high sensitivity MOSFET dosimeter after mammographic projection was introduced and a formula for the prediction of tube output with exposure records was developed. A series of appropriate conversion factors was applied to the MGD determination from the BESAK.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!