Biosynthesis of the Caenorhabditis elegans dauer pheromone.

Proc Natl Acad Sci U S A

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.

Published: February 2009

To sense its population density and to trigger entry into the stress-resistant dauer larval stage, Caenorhabditis elegans uses the dauer pheromone, which consists of ascaroside derivatives with short, fatty acid-like side chains. Although the dauer pheromone has been studied for 25 years, its biosynthesis is completely uncharacterized. The daf-22 mutant is the only known mutant defective in dauer pheromone production. Here, we show that daf-22 encodes a homolog of human sterol carrier protein SCPx, which catalyzes the final step in peroxisomal fatty acid beta-oxidation. We also show that dhs-28, which encodes a homolog of the human d-bifunctional protein that acts just upstream of SCPx, is also required for pheromone production. Long-term daf-22 and dhs-28 cultures develop dauer-inducing activity by accumulating less active, long-chain fatty acid ascaroside derivatives. Thus, daf-22 and dhs-28 are required for the biosynthesis of the short-chain fatty acid-derived side chains of the dauer pheromone and link dauer pheromone production to metabolic state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2631283PMC
http://dx.doi.org/10.1073/pnas.0810338106DOI Listing

Publication Analysis

Top Keywords

dauer pheromone
24
pheromone production
12
caenorhabditis elegans
8
elegans dauer
8
ascaroside derivatives
8
side chains
8
chains dauer
8
encodes homolog
8
homolog human
8
fatty acid
8

Similar Publications

Meloidogyne incognita genes involved in the repellent behavior in response to ascr#9.

Sci Rep

October 2024

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.

Meloidogyne incognita is one of the globally serious plant parasitic nematodes. New control measure is urgently needed to replace the common chemical control method. Ascarosides are pheromones regulating the nematodes' aggregation, avoidance, mating, dispersal and dauer recovery and formation.

View Article and Find Full Text PDF

Decisions made over long time scales, such as life cycle decisions, require coordinated interplay between sensory perception and sustained gene expression. The dauer (or diapause) exit developmental decision requires sensory integration of population density and food availability to induce an all-or-nothing organismal-wide response, but the mechanism by which this occurs remains unknown. Here, we demonstrate how the Amphid Single Cilium J (ASJ) chemosensory neurons, known to be critical for dauer exit, perform sensory integration at both the levels of gene expression and calcium activity.

View Article and Find Full Text PDF

Ascarosides and Symbiotic Bacteria of Entomopathogenic Nematodes Regulate Host Immune Response in Larvae.

Insects

July 2024

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China.

Insects protect themselves through their immune systems. Entomopathogenic nematodes and their bacterial symbionts are widely used for the biocontrol of economically important pests. Ascarosides are pheromones that regulate nematode behaviors, such as aggregation, avoidance, mating, dispersal, and dauer recovery and formation.

View Article and Find Full Text PDF

Environmental conditions experienced early in the life of an animal can result in gene expression changes later in its life history. We have previously shown that animals that experienced the developmentally arrested and stress resistant dauer stage (postdauers) retain a cellular memory of early-life stress that manifests during adulthood as genome-wide changes in gene expression, chromatin states, and altered life history traits. One consequence of developmental reprogramming in postdauer adults is the downregulation of TRPV channel gene expression in the ADL chemosensory neurons resulting in reduced avoidance to a pheromone component, ascr#3.

View Article and Find Full Text PDF

Decisions made over long time scales, such as life cycle decisions, require coordinated interplay between sensory perception and sustained gene expression. The dauer (or diapause) exit developmental decision requires sensory integration of population density and food availability to induce an all-or-nothing organismal-wide response, but the mechanism by which this occurs remains unknown. Here, we demonstrate how the ASJ chemosensory neurons, known to be critical for dauer exit, perform sensory integration at both the levels of gene expression and calcium activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!