Calorimetric and dielectric study of organic ferroelectrics, phenazine-chloranilic acid, and its bromo analog.

J Chem Phys

Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan.

Published: January 2009

The heat capacities of single crystals of organic ferroelectric complexes phenazine-chloranilic acid (Phz-H(2)ca) and phenazine-bromanilic acid (Phz-H(2)ba) were measured. At temperatures below those of the reported ferroelectric phase transitions, heat capacity anomalies due to successive phase transitions were found in both complexes. Excess entropies involved in the low-temperature successive phase transitions are much larger than those due to the ferroelectric phase transitions. The temperature dependence of the complex dielectric constants showed the existence of multiple dielectric relaxation modes in both complexes and their deuterated analogs (Phz-D(2)ca and Phz-D(2)ba). We discuss the possibility of concerted hopping of neighboring protons within a hydrogen-bonded chain while taking into account the one-dimensional nature of the chain.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3058589DOI Listing

Publication Analysis

Top Keywords

phase transitions
16
phenazine-chloranilic acid
8
ferroelectric phase
8
successive phase
8
calorimetric dielectric
4
dielectric study
4
study organic
4
organic ferroelectrics
4
ferroelectrics phenazine-chloranilic
4
acid bromo
4

Similar Publications

αβT cells protect vertebrates against many diseases, optimizing surveillance using mechanical force to distinguish between pathophysiologic cellular alterations and normal self-constituents. The multi-subunit αβT-cell receptor (TCR) operates outside of thermal equilibrium, harvesting energy via physical forces generated by T-cell motility and actin-myosin machinery. When a peptide-bound major histocompatibility complex molecule (pMHC) on an antigen presenting cell is ligated, the αβTCR on the T cell leverages force to form a catch bond, prolonging bond lifetime, and enhancing antigen discrimination.

View Article and Find Full Text PDF

In biological systems such as cells, the macromolecules, which are anisotropic particles, diffuse in a crowded medium. In the present work, we have studied the diffusion of spheroidal particles diffusing between cylindrical obstacles by varying the density of the obstacles as well as the spheroidal particles. Analytical calculation of the free energy showed that the orientational vector of a single oblate particle will be aligned perpendicular, and a prolate particle will be aligned parallel to the symmetry axis of the cylindrical obstacles in equilibrium.

View Article and Find Full Text PDF

Vanadium dioxide (VO) has received significant interest in the context of nanophotonic metamaterials and memories owing to its reversible insulator-metal transition associated with significant changes in its optical and electronic properties. The phase transition of VO has been extensively studied for several decades, and the ways how to control its hysteresis characteristics relevant for memory applications have significantly improved. However, the hysteresis dynamics and stability of coexisting phases during the transition have not been studied on the level of individual single-crystal VO nanoparticles (NPs), although they represent the fundamental component of ordinary polycrystalline films and can also act like nanoscale memory units on their own.

View Article and Find Full Text PDF

Diblock copolyelectrolytes have significant potential in applications such as solid-state single-ion conductors, but precisely controlling their nanostructures for efficient ion transport remains a challenge. In this study, we explore the phase behavior and microphase transitions of AX BY-type diblock copolyelectrolytes under alternating electric fields using coarse-grained molecular dynamics simulations. We systematically investigate the effects of various electric field features, including unipolar and bipolar square-waves, as well as offset and non-offset sine-waves, focusing on how field strength and period influence the self-assembling morphology of the copolyelectrolytes.

View Article and Find Full Text PDF

Phase evolutions of sodium layered oxide cathodes during thermal fluctuations.

Chem Commun (Camb)

January 2025

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.

Layered transition metal oxide (NaTMO) cathodes are considered highly appropriate for the practical applications of sodium-ion batteries (SIBs) owing to their facile synthesis and high theoretical capacity. Generally, the phase evolution behaviors of NaTMO during solid-state reactions at high temperature closely related to their carbon footprint, prime cost, and the eventual electrochemical properties, while the thermal stability in various desodiated states associated with wide temperature fluctuations are extremely prominent to the electrochemical properties and safety of SIB devices. Therefore, in this review, the influences of sintering conditions such as pyrolysis temperature, soaking time, and cooling rates on the phase formation patterns of NaTMO are summarized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!