The fuzzy structure theory was introduced 20 years ago in order to model the effects of complex subsystems imprecisely known on a master structure. This theory was only aimed at structural dynamics. In this paper, an extension of that theory is proposed in developing an elastoacoustic element useful to model sound-insulation layers for computational vibroacoustics of complex systems. The simplified model constructed enhances computation time and memory allocation because the number of physical and generalized degrees of freedom in the computational vibroacoustic model is not increased. However, these simplifications introduce model uncertainties. In order to take into account these uncertainties, the nonparametric probabilistic approach recently introduced is used. A robust simplified model for sound-insulation layers is then obtained. This model is controlled by a small number of physical and dispersion parameters. First, the extension of the fuzzy structure theory to elastoacoustic element is presented. Second, the computational vibroacoustic model including such an elastoacoustic element to model sound-insulation layer is given. Then, a design methodology to identify the model parameters with experiments is proposed and is experimentally validated. Finally, the theory is applied to an uncertain vibroacoustic system.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.3035827DOI Listing

Publication Analysis

Top Keywords

structure theory
16
fuzzy structure
12
sound-insulation layers
12
elastoacoustic element
12
model sound-insulation
12
model
10
element model
8
simplified model
8
number physical
8
computational vibroacoustic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!