This paper describes the fabrication and characterization of thin-layer mercury/gold amalgam microelectrodes and their integration with microchip-based flow injection analysis. This microchip platform allows on-chip injection and lysis of erythrocytes followed by selective detection of intracellular glutathione (GSH) at low potentials. The thin-layer gold microelectrodes were amalgamated by electrodeposition of mercury. The electrodes produced a linear response for both GSH and cysteine in flow injection analysis studies utilizing both off-chip and on-chip injection. Comparative experiments using diamide and on-chip injection were performed to demonstrate the ability of the microchip device to detect changes in GSH concentration. Finally, rabbit erythrocyte samples (2% hematocrit) were injected and lysed on-chip and the amount of GSH detected corresponded to 312 amol/cell, which is in agreement with previously reported values. The selectivity, short time between injection and detection (approximately 5 s), and the continuous introduction of sample to the on-chip injector should enable the study of dynamically changing systems such as the glutathione redox system found in erythrocytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2633112PMC
http://dx.doi.org/10.1039/b813898bDOI Listing

Publication Analysis

Top Keywords

on-chip injection
12
selective detection
8
microchip-based flow
8
mercury/gold amalgam
8
amalgam microelectrodes
8
flow injection
8
injection analysis
8
injection
6
on-chip
5
detection endogenous
4

Similar Publications

Quantitative investigation of a 3D bubble trapper in a high shear stress microfluidic chip using computational fluid dynamics and L*A*B* color space.

Biomed Microdevices

January 2025

Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 111 Suwannabhumi Canal Rd, Bang Pla, Bang Phli District, Samut Prakan, 10540, Thailand.

Microfluidic chips often face challenges related to the formation and accumulation of air bubbles, which can hinder their performance. This study investigated a bubble trapping mechanism integrated into microfluidic chip to address this issue. Microfluidic chip design includes a high shear stress section of fluid flow that can generate up to 2.

View Article and Find Full Text PDF

Microfluidics provides cutting-edge technological advancements for the in-channel manipulation and analysis of dissolved macromolecular species. The intrinsic potential of microfluidic devices to control key characteristics of polymer macromolecules such as their size distribution requires unleashing its full capacity. This work proposes a combined approach to analyzing the microscale behavior of polymer solutions and modifying their properties.

View Article and Find Full Text PDF

Continuous-wave perovskite polariton lasers.

Sci Adv

January 2025

State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China.

Solution-processed semiconductor lasers are next-generation light sources for large-scale, bio-compatible and integrated photonics. However, overcoming their performance-cost trade-off to rival III-V laser functionalities is a long-standing challenge. Here, we demonstrate room-temperature continuous-wave perovskite polariton lasers exhibiting remarkably low thresholds of ~0.

View Article and Find Full Text PDF
Article Synopsis
  • Developed a non-contact method using acousto-hydrodynamic tweezers (AHT) for denuding cumulus-oocyte complexes (COCs), showing higher efficiency compared to traditional manual methods.
  • Tested on mice, the method demonstrated no damage to oocytes and reduced denudation time by 46% while maintaining embryo development rates.
  • Findings suggest that using acoustic waves can significantly improve the denudation process for intracytoplasmic sperm injection (ICSI), potentially enhancing fertility treatment procedures.
View Article and Find Full Text PDF

Osteoarthritis (OA) is one of the most prevalent joint diseases globally, characterized by the progressive breakdown of articular cartilage, resulting in chronic pain, stiffness, and loss of joint function. Despite its significant socioeconomic impact, therapeutic options remain limited, largely due to an incomplete understanding of the molecular mechanisms driving cartilage degradation and OA pathogenesis. Recent advances in in vitro modeling have revolutionized joint tissue research, transitioning from simplistic two-dimensional cell cultures to sophisticated three-dimensional (3D) constructs that more accurately mimic the physiological microenvironment of native cartilage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!