We used an allele-specific real-time PCR assay to explore the presence of K103N and M184V minority species among primary human immunodeficiency virus (HIV) infections and their potential influence in HIV transmission. Thirty randomly chosen antiretroviral drug-naive patients lacking both the K103N and the M184V mutations as determined by conventional sequencing methods were studied, and K103N and M184V viral minority species were found in three (10%) and four (11%) patients, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2663097PMC
http://dx.doi.org/10.1128/AAC.01494-08DOI Listing

Publication Analysis

Top Keywords

k103n m184v
12
human immunodeficiency
8
immunodeficiency virus
8
virus hiv
8
minority species
8
detection human
4
hiv
4
hiv type
4
m184v
4
type m184v
4

Similar Publications

Background: Antiretroviral treatment increases the risk of accumulation of resistance mutations that negatively impact the possibilities of future treatment. This study aimed to present the frequency of HIV-1 antiretroviral resistance mutations and the genetic diversity among children with virological failure in five pediatric care facilities in Benin.

Methods: A cross-sectional study was carried out from November 20, 2020, to November 30, 2022, in children under 15 years of age who failed ongoing antiretroviral treatment at five facilities care in Benin (VL > 3log10 on two consecutive realizations three months apart).

View Article and Find Full Text PDF

Islatravir (ISL) is a novel antiretroviral that inhibits HIV-1 reverse transcriptase translocation. The M184V mutation, known to reduce ISL's viral susceptibility in vitro, could arise from prolonged exposure to nucleoside reverse transcriptase inhibitors (NRTI) (3TC). This study evaluated the predictive efficacy of ISL and identified potentially active antiretrovirals in combination among treatment-experienced patients in Cameroon, where NRTIs (3TC) have been the backbone of ART for decades now.

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate the prevalence and characteristics of drug resistance mutations (DRMs) in patients with low-level viremia (LLV) in Southwestern China, as it has become a growing challenge in AIDS clinical practice.

Methods: This cross-sectional study was performed in Yunnan Province, Southwestern China. LLV was defined as 50-999 copies/mL of plasma viral load with antiretroviral therapy (ART) for at least 6 months.

View Article and Find Full Text PDF

In 2023, we published a case study involving a 10-year-old HIV-1-infected child with low-level viremia (LLV). We showed that this child patient achieved successful viral suppression by modifying the antiretroviral therapy (ART) regimen according to the HIV-1 DNA genotypic drug resistance testing. In this study, we aimed to address whether HIV-1 DNA genotypic drug resistance testing could direct successfully virological suppression in HIV-1-infected patients experiencing persistent LLV based on evidence from a cohort study.

View Article and Find Full Text PDF

Genetic Diversity and Antiretroviral Resistance in HIV-1-Infected Patients Newly Diagnosed in Cabo Verde.

Viruses

December 2024

Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal.

The high genetic variability of HIV-1 and the emergence of transmitted drug resistance (TDR) can impact treatment efficacy. In this study, we investigated the prevalent HIV-1 genotypes and drug-resistance-associated mutations in drug-naïve HIV-1 individuals in Cabo Verde. The study, conducted between 2018 and 2019, included drug-naïve HIV-1 individuals from the São Vicente, Boa Vista, Fogo, and Santiago islands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!