Fascin is a 55-kDa globular protein that functions to organize filamentous-actin into parallel bundles. A role for fascin in cell migration has led to its study in many tumor types. In this report, we investigate fascin in astrocytomas. We show that fascin is expressed in astrocytes and in a panel of human astrocytoma cell lines. Immunofluorescence analysis demonstrates that fascin and the intermediate filament protein, glial fibrillary acidic protein (GFAP), are both expressed in the perinuclear region and within cytoplasmic processes of astrocytes and astrocytoma cells. Amino acid residues within the NH2 terminus of GFAP can undergo phosphorylation; these modifications regulate intermediate filament disassembly and occur during cytokinesis. We show that fascin and specific phosphorylated species of GFAP colocalize within dividing cells. Finally, we demonstrate that fascin co-immunoprecipitates with GFAP and that immunocomplex formation is preferential for GFAP phosphorylated at serine residues 8 and 13. These data show that fascin and GFAP are immunolocalized regionally within cells and tumors of astrocytic origin and suggest that their binding may occur during dynamic reorganization of intermediate filaments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8094668 | PMC |
http://dx.doi.org/10.1111/j.1750-3639.2008.00261.x | DOI Listing |
Appl Biochem Biotechnol
January 2025
The Joint Institute of Tobacco and Health, No. 367, Honglin Road, Kunming, 650231, China.
Epidemiologic study suggests that nicotine reduces the risk of Parkinson's disease (PD) and thus could serve as a potential treatment. In this study, we aimed to investigate the effect of nicotine on the behavioral phenotypes and pathological characteristics of mice induced by human alpha-synuclein preformed fibers (α-syn-PFF). Mice were injected with 5 µg of human α-syn-PFF in the hippocampus while administering nicotine-containing drinking water (200 µg/mL).
View Article and Find Full Text PDFSci Rep
January 2025
Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea.
Brain-derived neurotrophic factor (BDNF) plays an essential role in regulating diverse neuronal functions in an activity-dependent manner. Although BDNF is synthesized primarily in neurons, astrocytes can also supply BDNF through various routes, including the recycling of neuron-derived BDNF. Despite accumulating evidence for astrocytic BDNF uptake and resecretion of neuronal BDNF, the detailed mechanisms underlying astrocytic BDNF recycling remain unclear.
View Article and Find Full Text PDFSci Rep
January 2025
Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones CientÃficas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina.
Extracellular vesicles (EVs) play a critical role in the development of neural cells in the central nervous system (CNS). Human neural rosettes (hNRs) are radial cell structures that assemble from induced pluripotent stem cells (hiPSCs) and recapitulate some stages of neural tube morphogenesis. Here we show that hiPSCs and hNRs secrete EVs (hiPSC-EVs and hNR-EVs) with distinctive protein cargoes.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.
Blood-brain barrier (BBB) disintegration is a key contributor to neuroinflammation; however, the biological processes governing BBB permeability under physiological conditions remain unclear. Here, we investigate the role of NLRP3 inflammasome in BBB disruption following peripheral inflammatory challenges. Repeated intraperitoneal lipopolysaccharide administration causes NLRP3-dependent BBB permeabilization and myeloid cell infiltration into the brain.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Danish Dementia Research Centre, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
Background: Little is known about confounding factors influencing Alzheimer's disease (AD) blood biomarker concentrations.
Objective: The objective of this systematic review was to explore the available evidence for the influences of ethnicity and race on AD blood biomarker concentrations.
Methods: We conducted a comprehensive systematic search in PubMed and Web of Science databases spanning from inception until 15 June 2023.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!