Realization of chip-based all-optical and optoelectronic computational networks will require ultracompact Si-compatible modulators, ideally comprising dimensions, materials, and functionality similar to electronic complementary metal-oxide-semiconductor (CMOS) components. Here we demonstrate such a modulator, based on field-effect modulation of plasmon waveguide modes in a MOS geometry. Near-infrared transmission between an optical source and drain is controlled by a gate voltage that drives the MOS into accumulation. Using the gate oxide as an optical channel, electro-optic modulation is achieved in device volumes of half of a cubic wavelength with femtojoule switching energies and the potential for gigahertz modulation frequencies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl803868kDOI Listing

Publication Analysis

Top Keywords

plasmostor metal-oxide-si
4
metal-oxide-si field
4
field plasmonic
4
plasmonic modulator
4
modulator realization
4
realization chip-based
4
chip-based all-optical
4
all-optical optoelectronic
4
optoelectronic computational
4
computational networks
4

Similar Publications

Realization of chip-based all-optical and optoelectronic computational networks will require ultracompact Si-compatible modulators, ideally comprising dimensions, materials, and functionality similar to electronic complementary metal-oxide-semiconductor (CMOS) components. Here we demonstrate such a modulator, based on field-effect modulation of plasmon waveguide modes in a MOS geometry. Near-infrared transmission between an optical source and drain is controlled by a gate voltage that drives the MOS into accumulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!