The tegmental pedunculopontine nucleus (TPP) of the midbrain is critical in mediating the acute rewarding effects of opiates. However, the circuitry and neurochemistry underlying this effect has not been determined. Here we identify TPP receptors and cell types involved in systemic morphine reward and suggest an anatomical and neurochemical model for reward in the TPP. Simple hypothetical anatomical models for serial cell arrangements and receptors in the TPP were proposed and predictions of behavioral outcome (reward or no reward) then were made, based on the administration of agonists and antagonists directly into the TPP of rats. We report that TPP-administered NMDA produced rewarding effects, although GABA agonists and antagonists had no motivational effects on their own. However, the NMDA receptor antagonist AP-7 and the GABA-B receptor antagonist saclofen, while having no motivational effects on their own, blocked systemic morphine reward as measured by conditioned place preference. These results provide positive evidence for GABA-B and glutamate synapses in the TPP, which mediates systemic morphine reward and suggest that a serial pathway for morphine reward in the TPP is unlikely.

Download full-text PDF

Source
http://dx.doi.org/10.1037/a0014015DOI Listing

Publication Analysis

Top Keywords

morphine reward
20
systemic morphine
12
tegmental pedunculopontine
8
reward
8
rewarding effects
8
reward tpp
8
agonists antagonists
8
motivational effects
8
receptor antagonist
8
tpp
7

Similar Publications

It is currently estimated that every 15 minutes an infant is born with opioid use disorder and undergoes intense early life trauma due to opioid withdrawal. Clinical research on the long-term consequences of gestational opioid exposure reports increased rates of social, conduct, and emotional disorders in these children. Here, we investigate the impact of perinatal opioid exposure (POE) on behaviors associated with anhedonia and stress in male and female Sprague Dawley rats.

View Article and Find Full Text PDF

Corticosteroid signaling plays a critical role in modulating the neural systems underlying reward and addiction, but the specific contributions of glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs) in the medial prefrontal cortex (mPFC) to opioid reward and dopaminergic plasticity remain unclear. Here, we investigated the effects of intra-mPFC injection of corticosteroid receptor ligand (corticosterone; CORT), glucocorticoid receptor antagonist (RU38486; RU), and mineralocorticoid receptor antagonist (spironolactone; SP) on morphine-induced conditioned place preference (CPP) and dopamine transporter (DAT) expression in the mPFC. Adult male Wistar rats received intra-mPFC injections of CORT, RU, SP, or their respective vehicles prior to morphine CPP conditioning.

View Article and Find Full Text PDF

Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects.

View Article and Find Full Text PDF

Background: Little attention has been paid to the experiences of clinicians and health personnel who provide heroin-assisted treatment (HAT). This study provides the first empirical findings about the clinicians' experiences of providing HAT in the Norwegian context.

Methods: 23 qualitative interviews were conducted with 31 clinicians shortly after HAT clinics opened in Norway's two largest cities: Oslo and Bergen.

View Article and Find Full Text PDF

Drug addiction is a multifactorial syndrome in which genetic predispositions and exposure to environmental stressors constitute major risk factors for the early onset, escalation, and relapse of addictive behaviors. While it is well known that stress plays a key role in drug addiction, the genetic factors that make certain individuals particularly sensitive to stress and, thereby, more vulnerable to becoming addicted are unknown. In an effort to test a complex set of gene x environment interactions-specifically gene x chronic stress-here we leveraged a systems genetics resource: BXD recombinant inbred mice (BXD5, BXD8, BXD14, BXD22, BXD29, and BXD32) and their parental mouse lines, C57BL/6J and DBA/2J.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!