Background And Objective: Orthodontic wires are exposed to a corrosive intraoral environment and are subject to mechanical and thermal load. This could affect how nickel titanium (NiTi) wires corrode, as they possess temperature- and load-dependent characteristics. It was the scope of this study to determine whether the clinical application of NiTi wires would lead to corrosion defects on the wire surfaces, and whether an influence on the patients' salivary Ni ion concentration would become apparent.
Material And Methods: A total of 115 wires of different manufacturers (Forestadent Titanol 'Low Force' und 'Martensitic', Ormco Copper Ni-Ti 35 degrees C, Ortho Organizers NiTi) was retrieved after intraoral application lasting 1 to 12 months. The wires were examined after cleaning with a scanning electron microscope. We also analyzed the salivary Ni ion concentration in 18 patients at predefined intervals following a detailed orthodontic treatment protocol during the initial phase of orthodontic therapy. The intervals were: 1) a saliva sample before treatment commenced, 2) after bonding of brackets and bands, 3) 2 weeks after bonding, immediately before and 4) immediately after fitting the archwires, and 5) 4 and 6) 8 weeks after placing the archwires. 16 to 20 brackets and bands were bonded in the upper and lower jaws, while NiTi leveling arches (ODS Euro Arch Opto Therm, 0.40 mm round) were fitted. The saliva samples were quick-frozen and subsequently dried under red light. Dried residuals were dissolved in aqua regia and filled up to 3 ml. The solutions were analyzed using a mass spectrometer (Perkin Elmer Elan 5000).
Results: Surface analysis revealed no differences in the degree of corrosion of the different products. In fact, we observed only extremely small and isolated corrosion defects. No statistically-significant differences were noted in the Ni ion concentration at time points 1 (reference value), 3, 5 and 6 (34, 34, 28 and 30 microg/l, respectively). The samples taken immediately after bracket bonding or the NiTi wire application however displayed a significant increase in the salivary Ni ion concentration (2: 78 and 4: 56 microg/l). It was significantly higher after bonding of the steel brackets than after NiTi wire application.
Conclusions: Increased Ni ions are released initially after the orthodontic devices have been fitted, but they decay quickly. This is reflected in miniscule corrosion defects as pitting. It is unlikely that orthodontic nickel titanium wires are a relevant additional Ni load for the patient.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00056-008-0808-4 | DOI Listing |
Braz J Microbiol
January 2025
Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, 721102, Midnapore, West Bengal, India.
Endophytic actinomycetes are potential sources of novel pharmaceutically active metabolites, significantly advancing natural product research. In the present investigation, secondary metabolites from two endophytic actinomycetes, Streptomyces parvulus GloL3, and Streptomyces lienomycini SK5, isolated from medicinal plant taxa, Globba marantina, and Selaginella kraussiana, exhibited broad-spectrum bioactivity. Ethyl Acetate (EA) extract of SK5 showed antimicrobial activity against nine human pathogens, including Methicillin-resistant Staphylococcus aureus (MRSA), Candida tropicalis, and C.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
The advancement of highly efficient and cost-effective electrocatalysts for electrochemical water splitting, along with the development of triboelectric nanogenerators (TENGs), is crucial for sustainable energy generation and harvesting. In this study, a novel hybrid composite by integrating graphitic carbon nitride (GCN) with an earth-abundant FeMg-layered double hydroxide (LDH) (GCN@FeMg-LDH) was synthesized by the hydrothermal approach. Under controlled conditions, with optimized concentrations of metal ions and GCN, the fabricated electrode, GCN@FeMg-LDH demonstrated remarkably low overpotentials of 0.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal-462003, India.
Mixing different metal ions at the B site of ABX perovskites offers a promising approach for addressing challenges related to toxicity, stability and performance in optoelectronic applications. One such example is CsPbSnBr which addresses the toxicity issue posed by lead while allowing us to tune optoelectronic properties such as the band gap. In this work, nearly monodisperse CsPbSnBr quantum dots (QDs) were synthesized with variable Pb/Sn compositions, CsPbBr, CsPbSnBr and CsPbSnBr.
View Article and Find Full Text PDFChem Sci
January 2025
Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur Bangalore 560064 India https://www.jncasr.ac.in/faculty/tmaji.
Coordination-driven metallo-supramolecular polymers hold significant potential as highly efficient catalysts for photocatalytic CO reduction, owing to the covalent integration of the light harvesting unit, catalytic center and intrinsic hierarchical nanostructures. In this study, we present the synthesis, characterization, and gelation behaviour of a novel low molecular weight gelator (LMWG) integrating a benzo[1,2-:4,5-']dithiophene core with terpyridine (TPY) units alkyl amide chains (TPY-BDT). The two TPY ends of the TPY-BDT unit efficiently chelate with metal ions, enabling the formation of a metallo-supramolecular polymer that brings together the catalytic center and a photosensitizer in close proximity, maximizing catalytic efficiency for CO reduction.
View Article and Find Full Text PDFHeliyon
January 2025
Nuclear Chemistry Division, Department of Chemistry, Atomic Energy Commission, P. O. Box: 9061, Damascus, Syrian Arab Republic.
Molecular scale information is needed to understand ions coordination to mineral surfaces and consequently to accelerate the design of improved adsorbents. The present work reports on the use of two-dimensional correlation Fourier Transform infra-red spectroscopy (2D-COS-FTIR) and hetero 2D-COS-FTIR- X-ray diffraction (XRD) to probe the mechanism of Cr(VI) removal from aqueous solutions by activated carbon (AC) and its composite with PWO (AC-composite). The adsorption data at an initial Cr(VI) concentration of 320 mg L (320 ppm) revealed maximum adsorption capacities of 65 mg g for AC and 73 mg g for AC-composite, corresponding to removal percentages of 83 % and 94 %, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!