Minimal oxidative load: a prerequisite for thyroid cell function.

J Endocrinol

Unité de Morphologie Expérimentale, Université Catholique de Louvain, UCL-5251, Bruxelles, Belgium.

Published: April 2009

In addition to reactive oxygen species (ROS) produced by mitochondria during aerobic respiration, thyrocytes are continuously producing H(2)O(2), a key element for hormonogenesis. Because nothing is known about ROS implication in normal non-stimulated cells, we studied their possible involvement in thyrocytes incubated with a potent antioxidant, N-acetylcysteine (NAC). NAC, which blocked the production of intracellular ROS, also decreased dual oxidases, thyroperoxidase, pendrin, and thyroglobulin protein and/or gene expression. By contrast, Na(+)/I(-) symporter mRNA expression was unaffected. Among antioxidant systems, peroxiredoxin (PRDX) five expression was reduced by NAC, whereas peroxiredoxin three increased and catalase remained unchanged. In vivo, the expression of both dual oxidases and peroxiredoxin five proteins was also decreased by NAC. In conclusion, when intracellular ROS levels drop below a basal threshold, the expression of proteins involved in thyroid cell function is hampered. This suggests that keeping ROS at a minimal level is required for safeguarding thyrocyte function.

Download full-text PDF

Source
http://dx.doi.org/10.1677/JOE-08-0470DOI Listing

Publication Analysis

Top Keywords

thyroid cell
8
cell function
8
intracellular ros
8
dual oxidases
8
ros
5
expression
5
minimal oxidative
4
oxidative load
4
load prerequisite
4
prerequisite thyroid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!