The ability of Pseudomonas syringae to grow and cause diseases in plants is dependent on the injection of multiple effector proteins into plant cells via the type III secretion system (T3SS). Genome-enabled bioinformatic/experimental methods have comprehensively identified the repertoires of effectors and related T3SS substrates for P. syringae pv. tomato DC3000 and three other sequenced strains. The effector repertoires are diverse and internally redundant. Insights into effector functions are being gained through the construction of mutants lacking one or more effector genes, which may be reduced in growth in planta, and through gain-of-function assays for the ability of single effectors to suppress plant innate immune defenses, manipulate hormone signaling, elicit cell death, and/or display biochemical activities on plant protein targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mib.2008.12.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!